- 记录一次进程被操作系统强制终止(OOM Killer)
别告诉我有BUG
jvmjava
问题背景场景:在一次系统迁移中,团队将原本运行在16G内存物理机的Java服务迁移到8G内存虚拟机,直接复用了原有的JVM参数(如-Xmx12g)。服务启动后运行正常,但几小时后突然宕机,日志中无明确错误,仅显示进程终止。影响:服务不可用持续30分钟部分业务数据丢失,用户投诉激增分析过程1.初步排查现象确认:进程消失,无Java堆栈或异常日志。系统日志/var/log/messages中发现OOM
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- JVM调优 从Full GC报警到性能提升90%的调优实录
C_V_Better
jvmjavajava性能优化jvmjava
背景事故现场:某社交APP晚高峰突发服务卡顿,用户消息延迟飙升监控大屏:GC时间从50ms/次→5秒/次堆内存锯齿状波动(配Prometheus图表)“FullGC每分钟触发3次,但堆内存却越回收越少?”一、GC日志分析——JVM的“心电图”解读1.日志结构全解析[GC(AllocationFailure)[PSYoungGen:614400K->24064K(614400K)]614400K->
- Java面试题中高级进阶(JVM篇Java内存)
李老头探索
javajvm开发语言
前言本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!说说Java内存结构?说说对象分配规则?描述一下JVM加载class文件的原理机制?似乎有点模糊了,那就大概看一下面试题吧。好记性不如烂键盘***12万字的java面试题整理***Java内存结构方法区和堆是所有线程共享的内存区域;而java栈、本地方法栈和程序员计数器是运行是线程私有的内存区域。Java堆(Heap),是Java虚拟机所
- JVM篇:内存分区及作用及各部分可能发生的异常
ashane1314
jvm
一、运行时数据区总览二、JVM内存分区及异常1.程序计数器(ProgramCounterRegister)作用:记录当前线程执行字节码的地址(行号),保证线程切换后能恢复到正确位置。特点:线程私有,唯一无内存溢出的区域。异常:无。由JVM规范严格管理,不会发生内存溢出。2.虚拟机栈(JavaVirtualMachineStack)作用:存储方法调用的栈帧(局部变量表、操作数栈、动态链接、方法出口等
- deepseek_各个版本django特性
终是蝶衣梦晓楼
django数据库python
以下是Django2.0至5.0的主要区别总结,按版本特性分类说明:1.Django2.0的主要变化Python支持仅支持Python3.4+,不再兼容Python2.x。路由系统弃用url(),引入path()和re_path()替代,path()默认不支持正则表达式,但提供内置转换器(如)进行参数类型匹配。支持更简洁的URL配置语法(例如path('articles//',views.year
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- 使用LM Studio在WordPress基于大模型原创文章上稿进行SEO优化
Mr数据杨
Python自然语言技术wordpress大模型seo1024程序员节
在进行自动化文章生成与发布的流程中,首先需要确保基础配置的完善性和数据的准确性。通过手动设置分类和标签,文章能够在发布时被准确归类,从而提升SEO的效果。通过Excel表格的方式管理这些分类与标签,结合Python脚本,可以高效地实现自动化文章的生成和发布。该流程依赖于对WordPress数据库的操作,包括标签的批量导入、分类和标签的映射,以及通过AI生成内容的自动发布。全面的配置不仅节省了手动处
- Java中锁升级的探究
我心向阳iu
#Java多线程Java面试知识点精讲javajvm开发语言
文章目录锁升级概述四种锁介绍1.无锁2.偏向锁实现原理3.轻量级锁(自旋锁)实现原理4.重量级锁实现原理锁升级过程锁升级过程举例说明锁升级原理锁升级概述JDK1.6之前,synchronized还是一个重量级锁,是一个效率比较低下的锁。但是在JDK1.6后,JVM为了提高锁的获取与释放效率对synchronized进行了优化,引入了偏向锁和轻量级锁,从此以后锁的状态就有了四种:无锁:无锁是指没有对
- HCIA网络层协议与IP编址
夏の橘
HCIA学习之路网络
摘要:网络层是OSI模型中的核心层级,负责实现跨网络的数据传输。本文深入解析HCIA认证要求的网络层协议(IP/ICMP/ARP)及IP编址技术,涵盖子网划分、NAT原理及数据转发流程,帮助读者掌握网络层关键技术。目录一、网络层协议核心功能二、核心协议解析1.IP协议(InternetProtocol)2.ICMP协议3.ARP协议三、IPv4编址技术详解1.地址结构与分类关键细节2.子网划分实践
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- 语音识别使用SenseVoiceSmall模型实现源码
丢了个猪
python语音识别深度学习机器学习语言模型
SenseVoiceSenseVoice是具有音频理解能力的音频基础模型,包括语音识别(ASR)、语种识别(LID)、语音情感识别(SER)和声学事件分类(AEC)或声学事件检测(AED)。本项目提供SenseVoice模型的介绍以及在多个任务测试集上的benchmark,以及体验模型所需的环境安装的与推理方式。pip安装pipinstallmodelscopepipinstallfunasrpi
- SenseVoice 实测,阿里开源语音大模型,识别效果和效率优于 Whisper,居然还能检测掌声、笑声!5分钟带你部署体验
AI码上来
AI实战开源whisperxcode
前段时间,带着大家捏了一个对话机器人:手把手带你搭建一个语音对话机器人,5分钟定制个人AI小助手(新手入门篇)其中语音识别(ASR)方案,采用的是阿里开源的FunASR,这刚不久,阿里又开源了一个更强的音频基础模型,该模型具有如下能力:语音识别(ASR)语种识别(LID)语音情感识别(SER)声学事件分类(AEC)声学事件检测(AED)传送门:https://github.com/FunAudio
- C语言基础18:函数的概述、分类、定义以及形参和实参
k要开心
c语言开发语言
函数函数的概述函数:实现一定功能的,独立的代码模块。我们的函数一定是先定义,后使用。使用函数的优势:①我们可以通过函数提供功能给别人使用。当然我们也可以使用别人提供的函数,减少代码量。②借助函数可以减少重复性的代码。③实现结构化(模块化)程序设计思想。关于结构化设计思想:将大型的任务功能划分为相互独立的小型的任务模块来设计。函数是C语言程序的基本组成单元:C语言程序是由一个(必然是main函数)或
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- xml:schema详解
yippeelyl
Androidjava
XMLSchema详解博客分类:XMLXML数据结构正则表达式Struts什么是Schema?在计算机软件中,Schema这个词在不同的应用中有不同的含义,可以翻译为:架构、结构、规则、模式等。在XML中,Schema指的是定义和描述XML文档的规则,翻译为模式。XMLSchema与DTD的比较我们看例4-3所示的XML文档。例4-3employee.xml张三26zhangsan@sunxin.
- springboot里classpath与classpath*的区别是什么?
javascript
在SpringBoot中,classpath和classpath*是用于资源加载的两个关键概念,它们的主要区别在于资源查找的范围和方式。以下是它们的详细区别:1.classpath定义:classpath表示从当前类路径(Classpath)中查找资源。查找范围:它只会从当前类加载器的类路径中查找资源,不会递归查找子模块或依赖中的资源。使用场景:适用于明确知道资源位于当前模块或应用的类路径中的情况
- 设计模式--访问者模式【行为型模式】
码农爱java
设计模式设计模式访问者模式23种设计模式面试原理Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--代理模式【结构型模式】
码农爱java
设计模式设计模式代理模式23种设计模式面试原理动态代理静态代理
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--建造者模式【创建型模式】
码农爱java
设计模式设计模式建造者模式23中设计模式原理面试Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- 设计模式--中介者模式【行为型模式】
码农爱java
设计模式设计模式中介者模式23种设计模式面试原理Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- Hive 分区详解
mm_ren
分区表hadoop大数据hivespark
在Hive中处理数据时,当处理的一张表的数据量过大的时候,每次查询都是遍历整张表,显然对于计算机来说,是负担比较重的。所以我们可不可以针对数据进行分类,查询时只遍历该分类中的数据,这样就能有效的解决问题。所以就会Hive在表的架构下,就会有分区的这个概念,就是为了满足此需求。分区表的一个分区对应hdfs上的一个目录分区表包括静态分区表和动态分区表,根据分区会不会自动创建来区分多级分区表,即创建的时
- 吸烟YOLO数据集,COCO格式
鳄鱼的眼药水
YOLO人工智能深度学习
抽烟吸烟数据集,标签txt,图像已经分好了测试集,验证集,训练集1️⃣可以直接导入YOLO进行训练,没有细分类,里面有的类,闲鱼9.9解君愁,明人不说暗话闲鱼搜索莓格米米私聊
- RadioTransformer:用于视觉注意力引导疾病分类的级联全局焦点Transformer
托比-马奎尔
医学图像处理Transformer变形transformer深度学习人工智能
利用放射科医生的注视模式并模拟他们的视觉认知行为,以在胸部X光片上进行疾病诊断。放射科医生等领域专家依靠视觉信息来解释医学图像。另一方面,视觉解释有挑战性,但是视线跟踪已被用来捕获领域专家的观看行为,从而深入了解视觉搜索的复杂性。但即使是那些依赖注意力机制的框架,也不会利用这种丰富的领域信息来进行诊断。RadioTransformer通过学习放射科医生的视觉搜索模式,在级联的全局焦点Transfo
- 医学顶会 MICCAI‘24 | COVID19 至肺炎:使用 CNN Transformer 位置感知特征编码网络对多区域肺部严重程度进行分类
小白学视觉
医学图像处理论文解读cnntransformer分类深度学习医学图像处理医学图像顶会论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:COVID19toPneumonia:MultiRegionLungSeverityClassificationusingCNNTransformerPosition-AwareFeatureEncodingNetworkCOVID19至肺炎:使用CNNTransformer位置感知特征编码网络对多区域肺部严重程度进行分类作者:Jo
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 如何利用Python爬虫获取淘宝分类详情:实战案例指南
数据小爬虫@
python爬虫开发语言
在电商领域,淘宝作为中国最大的电商平台之一,其分类详情数据对于市场分析、竞争策略制定以及电商运营优化具有极高的价值。通过Python爬虫技术,我们可以高效地获取这些数据,为电商从业者提供强大的数据支持。本文将详细介绍如何利用Python编写爬虫程序,快速获取淘宝分类详情数据。一、准备工作(一)环境搭建确保你的开发环境中已经安装了以下必要的库:requests:用于发送HTTP请求。Beautifu
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc