十大经典数据挖掘算法:SVM

作者简介:
Treant 人工智能爱好者社区专栏作者
博客专栏: https://www.cnblogs.com/en-heng

 

SVM(Support Vector Machines)是分类算法中应用广泛、效果不错的一类。《统计学习方法》对SVM的数学原理做了详细推导与论述,本文仅做整理。由简至繁SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM、线性不可分的线性SVM、非线性(nonlinear)SVM。

 

1.线性可分

对于二类分类问题,训练集

,其类别

,线性SVM通过学习得到分离超平面(hyperplane):

 

 

以及相应的分类决策函数:

 

 

有如下图所示的分离超平面,哪一个超平面的分类效果更好呢?

 

十大经典数据挖掘算法:SVM_第1张图片

 

直观上,超平面

的分类效果更好一些。将距离分离超平面最近的两个不同类别的样本点称为支持向量(support vector)的,构成了两条平行于分离超平面的长带,二者之间的距离称之为margin。显然,margin更大,则分类正确的确信度更高(与超平面的距离表示分类的确信度,距离越远则分类正确的确信度越高)。通过计算容易得到:

 

 

从上图中可观察到:margin以外的样本点对于确定分离超平面没有贡献,换句话说,SVM是有很重要的训练样本(支持向量)所确定的。至此,SVM分类问题可描述为在全部分类正确的情况下,最大化

(等价于最小化

);线性分类的约束最优化问题

 

 

对每一个不等式约束引进拉格朗日乘子(Lagrange multiplier)

构造拉格朗日函数(Lagrange function):

 

 

根据拉格朗日对偶性,原始的约束最优化问题可等价于极大极小的对偶问题:

 

 

求偏导并令其等于0,则

 

十大经典数据挖掘算法:SVM_第2张图片

 

将上述式子代入拉格朗日函数(3)中,对偶问题转为

 

 

等价于最优化问

 

十大经典数据挖掘算法:SVM_第3张图片

 

线性可分是理想情形,大多数情况下,由于噪声或特异点等各种原因,训练样本是线性不可分的。因此,需要更一般化的学习算法。

 

2.线性不可分

线性不可分意味着有样本点不满足约束条件(2),为了解决这个问题,对每个样本引入一个松弛变量

这样约束条件变为:

 

 

目标函数则变为

 

 

其中,

为惩罚函数,目标函数有两层含义:

  • margin尽量大,
  • 误分类的样本点计量少

 

为调节二者的参数。通过构造拉格朗日函数并求解偏导(具体推导略去),可得到等价的对偶问题:

 

十大经典数据挖掘算法:SVM_第4张图片

 

与上一节中线性可分的对偶问题相比,只是约束条件

发生变化,问题求解思路与之类似。

 

3.非线性

对于非线性问题,线性SVM不再适用了,需要非线性SVM来解决了。解决非线性分类问题的思路,通过空间变换ϕ(一般是低维空间映射到高维空间

后实现线性可分,在下图所示的例子中,通过空间变换,将左图中的椭圆分离面变换成了右图中直线。

 

十大经典数据挖掘算法:SVM_第5张图片

 

在SVM的等价对偶问题中的目标函数中有样本点的内积

在空间变换后则是

由于维数增加导致内积计算成本增加,这时核函数(kernel function)便派上用场了,将映射后的高维空间内积转换成低维空间的函数:

 

 

将其代入一般化的SVM学习算法的目标函数(7)中,可得非线性SVM的最优化问题:

 

十大经典数据挖掘算法:SVM_第6张图片

 

4.参考资料

[1] 李航,《统计学习方法》.

[2] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.

 

往期回顾:

【十大经典数据挖掘算法】C4.5

【十大经典数据挖掘算法】k-means

你可能感兴趣的:(机器学习)