本文简述了自己学习时钟系统的一些框架,参照风水月
时钟发生器用于产生时钟,并提供给CPU和外部硬件设备。
有如下三种系统时钟:
(1)主系统时钟
①通过连接一个振荡器到X1和X2,该振荡电路产生fx=1到20MHZ的时钟;
②使用内部高速振荡器产生fRH=8MHZ的时钟。
(2)副系统时钟
①通过在XT1和XT2之间连接一个fXT=32.768KHZ的振荡器;
②通过XT2引脚提供一个外部副系统时钟fexclks=32.768KHZ。
(3)内部低速振荡时钟(看门狗定时器时钟)
①内部低速振荡器,以fRL=240KHZ的时钟振荡。该时钟不能作为CPU时钟。
*- SYSCLK(系统时钟)
(1)梯形表示SYSCLK系统时钟的来源可以使HSI RC、PLLCLK、HSE Osc(即HSI振荡器时钟、HSE振荡器时钟、PLL时钟)
(2)绿色方框 表示 预分频器(prescaler)
按照上图深红色 的路线来解释:PLL的时钟源 经过前面的选择器 假设为8MHz,经过PLL 9倍频后 PLLCLK的频率为72MHz,则经过选择器 SYSCLK(系统时钟)频率为72MHz,经过AHB分频器 1分频后 HCLK输出频率72MHz,经过APB1分频器 2分频后 PCLK1频率为36MHz; 经过APB2分频器 1分频后 PCLK2频率为72MHz。
(3)时钟输出MCO脚(PA8),可以选择PLL输出的2分频、HSI、HSE或者系统时钟
01、将RCC寄存器重新设置为默认值 RCC_DeInit;
02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);
03、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();
04、设置AHB时钟 RCC_HCLKConfig;
05、设置高速AHB时钟 RCC_PCLK2Config;
06、设置低速速AHB时钟 RCC_PCLK1Config;
07、设置PLL RCC_PLLConfig;
08、打开PLL RCC_PLLCmd(ENABLE);
09、等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟 RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()
typedef struct
{
__IO uint32_t CR; //HSI,HSE,CSS,PLL等的使能和就绪标志位
__IO uint32_t CFGR; //PLL等的时钟源选择,分频系数设定
__IO uint32_t CIR; //清除/使能 时钟就绪中断
__IO uint32_t APB2RSTR; //APB2线上外设复位寄存器
__IO uint32_t APB1RSTR; //APB1线上外设复位寄存器
__IO uint32_t AHBENR; //DMA,SDIO等时钟使能
__IO uint32_t APB2ENR; //APB2线上外设时钟使能
__IO uint32_t APB1ENR; //APB1线上外设时钟使能
__IO uint32_t BDCR; //备份域控制寄存器
__IO uint32_t CSR; //控制状态寄存器
} RCC_TypeDef;
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : RCC配置(使用外部8MHz晶振)
* Input : 无
* Output : 无
* Return : 无
*******************************************************************************/
void RCC_Configuration(void)
{
/*将外设RCC寄存器重设为缺省值*/
RCC_DeInit();
/*设置外部高速晶振(HSE)*/
RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)
/*等待HSE起振*/
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪
{
/*设置AHB时钟(HCLK)*/
RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB时钟= 系统时钟
/* 设置高速AHB时钟(PCLK2)*/
RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK
/*设置低速AHB时钟(PCLK1)*/
RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2
/*设置FLASH存储器延时时钟周期数*/
FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期
/*选择FLASH预取指缓存的模式*/
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能
/*设置PLL时钟源及倍频系数*/
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9
/*使能PLL */
RCC_PLLCmd(ENABLE);
/*检查指定的RCC标志位(PLL准备好标志)设置与否*/
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/*设置系统时钟(SYSCLK)*/
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟
/* PLL返回用作系统时钟的时钟源*/
while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟
{
}
}
/*使能或者失能APB2外设时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
RCC_APB2Periph_GPIOC , ENABLE);
//RCC_APB2Periph_GPIOA GPIOA时钟
//RCC_APB2Periph_GPIOB GPIOB时钟
//RCC_APB2Periph_GPIOC GPIOC时钟
//RCC_APB2Periph_GPIOD GPIOD时钟
}
上面了解了 stm32默认给我们配置的是 什么样的时钟源,若我们想自定义,则需要借助系统库函数来进行修改,则我需要用到 stm32f10x_rcc.h里定义的库函数
时钟使能配置:
RCC_LSEConfig() 、RCC_HSEConfig()、
RCC_HSICmd() 、 RCC_LSICmd() 、 RCC_PLLCmd() ……
时钟源相关配置:
RCC_PLLConfig ()、 RCC_SYSCLKConfig() 、
RCC_RTCCLKConfig() …
分频系数选择配置:
RCC_HCLKConfig() 、 RCC_PCLK1Config() 、 RCC_PCLK2Config()…
外设时钟使能:
RCC_APB1PeriphClockCmd(): //APB1线上外设时钟使能
RCC_APB2PeriphClockCmd(); //APB2线上外设时钟使能
RCC_AHBPeriphClockCmd(); //AHB线上外设时钟使能
其他外设时钟配置:
RCC_ADCCLKConfig (); RCC_RTCCLKConfig();
状态参数获取参数:
RCC_GetClocksFreq();
RCC_GetSYSCLKSource();
RCC_GetFlagStatus()
RCC中断相关函数 :
RCC_ITConfig() 、 RCC_GetITStatus() 、 RCC_ClearITPendingBit()…
上面仅仅是对 时钟控制器 做了一个概念性的介绍,在编写程序时我们一般不直接操作 RCC_TypeDef结构体,而是调用相应的库函数来编程。
在此我们先看一下 库函数中 系统默认如何初始化这些 寄存器的,我们先看一段汇编程序,我们知道c中默认的程序入口是main函数,那main函数的如何调用的呢,我们先来看如下程序(该程序在startup_stm32f10x_hd.s中可以找到):
#ifdef STM32F10X_CL
uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
uint32_t prediv1factor = 0;
#endif /* STM32F10X_LD_VL or STM32F10X_MD_VL or STM32F10X_HD_VL */
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
#ifndef STM32F10X_CL
pllmull = ( pllmull >> 18) + 2;
if (pllsource == 0x00)
{
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
}
else
{
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
/* HSE oscillator clock selected as PREDIV1 clock entry */
SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
#else
/* HSE selected as PLL clock entry */
if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
{/* HSE oscillator clock divided by 2 */
SystemCoreClock = (HSE_VALUE >> 1) * pllmull;
}
else
{
SystemCoreClock = HSE_VALUE * pllmull;
}
#endif
}
#else
pllmull = pllmull >> 18;
if (pllmull != 0x0D)
{
pllmull += 2;
}
else
{ /* PLL multiplication factor = PLL input clock * 6.5 */
pllmull = 13 / 2;
}
if (pllsource == 0x00)
{
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
}
else
{/* PREDIV1 selected as PLL clock entry */
/* Get PREDIV1 clock source and division factor */
prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
if (prediv1source == 0)
{
/* HSE oscillator clock selected as PREDIV1 clock entry */
SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
}
else
{/* PLL2 clock selected as PREDIV1 clock entry */
/* Get PREDIV2 division factor and PLL2 multiplication factor */
prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1;
pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2;
SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
}
}
#endif /* STM32F10X_CL */
break;
default:
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK clock frequency ----------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.
* @param None
* @retval None
*/
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSE
SetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHz
SetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHz
SetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHz
SetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHz
SetSysClockTo56();
#elif defined SYSCLK_FREQ_72MHz
SetSysClockTo72();
#endif
/* If none of the define above is enabled, the HSI is used as System clock
source (default after reset) */
}
(1)从上面代码逐行往下看,我们知道我们前面的程序 定义的宏定义是 STM32F10X_HD,如下图
(2)从而在初始化器确定了系统时钟频率为(72MHz):‘#define SYSCLK_FREQ_72MHz 72000000’
初始化智慧的状态为:
SYSCLK 72MHz
AHB 72MHz
PCLK1 36MHz
PCLK2 72MHz
PLL 72MHz
(3)SystemInit()函数的第一行代码RCC->CR |= (uint32_t)0x00000001;我们查手册 CR寄存器第一位置1,表示开启8MHz内部振荡器,后续的代码阅读如该句,都需要参照手册 来理解,在此不再说明。
(4)初始化之后可以通过变量SystemCoreClock获取系统变量。如果SYSCLK=72MHz,那么变量SystemCoreClock=72000000。
STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。
在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。
文件开头就有一个这样的定义:
//#define SYSCLK_FREQ_HSE HSE_Value
//#define SYSCLK_FREQ_20MHz 20000000
//#define SYSCLK_FREQ_36MHz 36000000
//#define SYSCLK_FREQ_48MHz 48000000
//#define SYSCLK_FREQ_56MHz 56000000
#define SYSCLK_FREQ_72MHz 72000000
ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
#define SYSCLK_FREQ_72MHz 72000000
也就是103系列能跑到的最大值72M
然后这个 C文件继续往下看
#elif defined SYSCLK_FREQ_72MHz
const uint32_t SystemFrequency = SYSCLK_FREQ_72MHz;
const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;
const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;
const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;
这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了:
#elif defined SYSCLK_FREQ_72MHz
static void SetSysClockTo72(void);
这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了
所以设置系统时钟的流程就是:
首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:
第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000
第二个:调用SystemInit()