干货 | Excel如何进行高级数据分析?

640?wx_fmt=gif

网站分析中我想最常用的数据处理工具就是Excel了,Excel里头最基础的就是运算和图表的制作,稍微高级一点就是函数和数据透视表的使用了,当然你可能还会想到 VBA 和宏,但估计很少高手会使用这些高级的功能。

那对于高级的数据分析而言,也就是涉及统计学的专业分析方法和原理的时候,是不是就一定得求助于 SPSS、SAS 这类专业的分析工具呢?

数据分析从低级到高级层次的跳跃过程中有没有可以起承接作用的工具呢?其实是有的,这就是 Excel 的数据分析功能。

貌似最近比较火的两本 Excel 书籍《谁说菜鸟不会数据分析》和《让Excel飞》都没有涉及这部分的内容。

高级的数据分析会涉及回归分析、方差分析和T检验等方法,不要看这些内容貌似跟日常工作毫无关系,其实往高处走,MBA的课程也是包含这些内容的,所以早学晚学都得学,干脆就提前了解吧,请查看以下内容。

在使用之前,首先得安装 Excel 的数据分析功能,默认情况下,Excel 是没有安装这个扩展功能的,安装如下所示:

1)鼠标悬浮在 Office 按钮上,然后点击【Excel 选项】

干货 | Excel如何进行高级数据分析?_第1张图片

2)找到【加载项】,在管理板块选择【Excel 加载项】,然后点击【转到】

干货 | Excel如何进行高级数据分析?_第2张图片

3)选择【分析工具库】,点击【确定】

干货 | Excel如何进行高级数据分析?_第3张图片

4)安装完后,就可以【数据】板块看到【数据分析】功能,如下所示:

干货 | Excel如何进行高级数据分析?_第4张图片

安装完后,首先来了解一下回归分析的内容。

回归分析

在详细进行回归分析之前,首先要理解什么叫回归?实际上,回归这种现象最早由英国生物统计学家高尔顿在研究父母亲和子女的遗传特性时所发现的 一种有趣的现象:身高这种遗传特性表现出”高个子父母,其后代身高也高于平均身高;但不见得比其父母更高,到一定程度后会往平均身高方向发生’回归’”。

这种效应被称为趋中回归”。现在的回归分析则多半指源于高尔顿工作的那样一整套建立变量间的数量关系模型的方法和程序。 这里的自变量是父母的身高,因变量是子女的身高。

百度百科对于回归分析的定义是: 回归分析(regression analysis) 是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛:

1)回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;

2)按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

干货 | Excel如何进行高级数据分析?_第5张图片

这里举个电商的例子:电子商务的转换率是一定的,网站访问数一般正比对应于销售收入,现在要建立不同访问数情况下对应销售的标准曲线,用来预测搞活动时的销售收入,如下所示:

干货 | Excel如何进行高级数据分析?_第6张图片

1. 首先,利用散点图描绘图形:

干货 | Excel如何进行高级数据分析?_第7张图片

2. 添加趋势线,并且显示回归分析的公式和 R 平方值:

干货 | Excel如何进行高级数据分析?_第8张图片

干货 | Excel如何进行高级数据分析?_第9张图片

从图得知,R平方值=0.9995,趋势线趋同于一条直线,公式是:y=0.01028x-27.424
R 平方值是介于 0 和 1 之间的数字,当趋势线的 R 平方值为 1 或者接近 1 时,趋势线最可靠。

因为 R2 >0.99,所以这是一个线性特征非常明显的数值,说明拟合直线能够以大于 99.99% 地解释、涵盖了实际数据,具有很好的一般性, 能够起到很好的预测作用。

3. 使用Excel的数据分析功能

1)点击【数据分析】,在弹出的选择框中选择【回归】,然后点击【确定】

干货 | Excel如何进行高级数据分析?_第10张图片

2)【X值输入区域】选择访问数的单元格,【Y值输入区域】选择销售额的单元格,同时勾选如下所示的选项,包括残差、标准残差、残差图、线性拟合图和正态概率图。

干货 | Excel如何进行高级数据分析?_第11张图片

3)以下内容是残差和标准残差:

干货 | Excel如何进行高级数据分析?_第12张图片

4)以下是残差图:

干货 | Excel如何进行高级数据分析?_第13张图片

残差图是有关于实际值与预测值之间差距的图表,如果残差图中的散点在中轴上下两侧分布,那么拟合直线就是合理的,说明预测有时多些,有时少些,总体来说是符合趋势的,但如果都在上侧或者下侧就不行了,这样有倾向性,需要重新处理。

5)以下是线性拟合图

干货 | Excel如何进行高级数据分析?_第14张图片

在线性拟合图中可以看到,除了实际的数据点,还有经过拟和处理的预测数据点,这些参数在以上的表格中也有显示。

6)以下是正态概率图

干货 | Excel如何进行高级数据分析?_第15张图片

正态概率图一般用于检查一组数据是否服从正态分布,是实际数值和正态分布数据之间的函数关系散点图,如果这组数值服从正态分布,正态概率图将是一条直线。回归分析不一定得符合正态分布,这里只是仅仅把它描绘出来而已。

以上数据表格和图表都说明公式y=0.01028x-27.424是一个值得信赖的预测曲线,假设搞活动时流量有50万访问数的话,那么预测销售将是51373,如下图所示:

干货 | Excel如何进行高级数据分析?_第16张图片

End.

来源:云析社区

推荐一个 拿高薪的Python实战圈

640?wx_fmt=png

基础】0基础入门python,24小时有人快速解答问题;
【提高】40多个项目实战,老手可以从真实场景中学习python;
【直播】不定期直播项目案例讲解,手把手教你如何分析项目;
【分享】优质python学习资料分享,让你在最短时间获得有价值的学习资源;圈友优质资料或学习分享,会不时给予赞赏支持,希望每个优质圈友既能赚回加入费用,也能快速成长,并享受分享与帮助他人的乐趣。
【人脉】收获一群志同道合的朋友,并且都是python从业者
【价格】本着布道思想,只需 69元 加入一个能保证学习效果的良心圈子。

【赠予】后续圈主将开发python,0基础入门在线课程,免费送给圈友们,供巩固和系统化复习

(三重福利)最近入圈送大礼包:

1、2.7G、308份最新数据分析报告
2、40G 人工智能算法  视频课
3、Python爬虫课,共14课时(视频+PPT全套

640?wx_fmt=jpeg

你可能感兴趣的:(干货 | Excel如何进行高级数据分析?)