模型集成

模型集成

  • 学习目标
  • 集成学习方法
  • 深度学习中的集成学习
    • Dropout
    • TTA
    • Snapshot
  • 结果后处理

学习目标

1、学习集成学习方法以及交叉验证情况下的模型集成
2、学会使用深度学习模型的集成学习

集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。
由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。
假设构建了10折交叉验证,训练得到10个CNN模型。

那么在10个CNN模型可以使用如下方式进行集成:
对预测的结果的概率值进行平均,然后解码为具体字符;
对预测的字符进行投票,得到最终字符。

深度学习中的集成学习

Dropout

Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。
Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。
加入Dropout后的网络结构如下:

// # 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6

TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。

// def predict(test_loader, model, tta=10):
   model.eval()
   test_pred_tta = None
   # TTA 次数
   for _ in range(tta):
       test_pred = []
   
       with torch.no_grad():
           for i, (input, target) in enumerate(test_loader):
               c0, c1, c2, c3, c4, c5 = model(data[0])
               output = np.concatenate([c0.data.numpy(), c1.data.numpy(),
                  c2.data.numpy(), c3.data.numpy(),
                  c4.data.numpy(), c5.data.numpy()], axis=1)
               test_pred.append(output)
       
       test_pred = np.vstack(test_pred)
       if test_pred_tta is None:
           test_pred_tta = test_pred
       else:
           test_pred_tta += test_pred
   
   return test_pred_tta

Snapshot

在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。
由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。

结果后处理

在不同的任务中可能会有不同的解决方案,不同思路的模型不仅可以互相借鉴,同时也可以修正最终的预测结果。
在本次赛题中,可以从以下几个思路对预测结果进行后处理:
1、统计图片中每个位置字符出现的频率,使用规则修正结果;
2、单独训练一个字符长度预测模型,用来预测图片中字符个数,并修正结果。

你可能感兴趣的:(CV)