深度学习重要时间点

深度学习重要时间点

1986~2006统计学习方法的春天

1986年,决策树方法被提出,很快ID3,ID4,CART等改进的决策树方法相继出现,到目前仍然是非常常用的一种机器学习方法。该方法也是符号学习方法的代表。
1995年,线性SVM被统计学家Vapnik提出。该方法的特点有两个:由非常完美的数学理论推导而来(统计学与凸优化等),符合人的直观感受(最大间隔)。不过,最重要的还是该方法在线性分类的问题上取得了当时最好的成绩。
1997年,AdaBoost被提出,该方法是PAC(Probably Approximately Correct)理论在机器学习实践上的代表,也催生了集成方法这一类。该方法通过一系列的弱分类器集成,达到强分类器的效果。
2000年,KernelSVM被提出,核化的SVM通过一种巧妙的方式将原空间线性不可分的问题,通过Kernel映射成高维空间的线性可分问题,成功解决了非线性分类的问题,且分类效果非常好。至此也更加终结了NN时代。
2001年,随机森林被提出,这是集成方法的另一代表,该方法的理论扎实,比AdaBoost更好的抑制过拟合问题,实际效果也非常不错。
2001年,一种新的统一框架-图模型被提出,该方法试图统一机器学习混乱的方法,如朴素贝叶斯,SVM,隐马尔可夫模型等,为各种学习方法提供一个统一的描述框架。

2006年

2006年Hinton等人在science期刊上发表了论 文“Reducing the dimensionality of data with neural networks”,揭开了新的训练深层神经网络算法的序幕。利用无监督的RBM网络来进行预训练,进行图像的降维,取得比PCA更好的结果,通常这被认为是深度学习兴起的开篇。
2006年,NVIDIA推出CUDA,GPU被用于训练卷积神经网络。NVIDIA的GeForce系列被常用来做神经网络。

2006~2009年

在图像MNIST数据集,语音TIMIT数据集以及一些垂直领域的小比赛比如TRECVID也取得了不错的进展,但是还算不上突破性的,所以也不怎么为人所知。

2009年

斯坦福大学教授李飞飞,普林斯顿大学教授李凯等华裔学者发起建立了一个超大型的图像数据库。这个数据库建立之初,包含了320万张图像。它的目的是以英文里的8万个名词为基础,根据每个词收集500~1000张高清图片,最终形成一个5000万张图片的数据库,这个数据库就是 ImageNet。

2011年

CNN以0.56%的错误率赢得了IJCNN 2011比赛并超过了人眼,这是一场交通标志的识别比赛,研究者开始对深度学习在自动驾驶中的应用前景展现出浓厚的兴趣,毕竟在上个世纪90年代无人车的研究就已经开始了。现在无人车是非常大的一个应用前景。
2011年,Glorot等人提出ReLU激活函数,有效地抑制了深层网络的梯度消失问题,现在最好的激活函数都是来自于ReLU家族,简单而有效。

2012年

经典书籍《大数据时代》出版,作者维克托•迈尔•舍恩伯格在书中指出大数据时代来了。
也就是从那个时候开始,人们大喊,大数据来了,一时之间,数据科学家,数据挖掘工程师成为热门。
2012年Hinton的学生Alex Krizhevsky提出AlexNet网络,碾压第二名(SVM方法)的分类性能。也正是由于该比赛,CNN吸引到了众多研究者的注意。Alex Krizhevsky使用了两块GTX580显卡。

AlexNet的创新点在于

1 首次采用ReLU激活函数,极大增大收敛速度且从根本上解决了梯度消失问题。
2 由于ReLU方法可以很好抑制梯度消失问题,AlexNet抛弃了“预训练+微调”的方法,完全采用有监督训练。也正因为如此,DL的主流学习方法也因此变为了纯粹的有监督学习。
3 扩展了LeNet5结构,添加Dropout层减小过拟合,LRN层增强泛化能力/减小过拟合。
4 第一次使用GPU加速模型计算。

2013

2013、2014、2015、2016年,通过ImageNet图像识别比赛,DL的网络结构,训练方法,GPU硬件的不断进步,促使其在其他领域也在不断的征服战场。
2013**年,Hinton的学生Zeiler和Fergus在研究中利用反卷积技术引入了神经网络的可视化,提出了zfnet,对网络的中间特征层进行了可视化,为研究人员检验不同特征激活及其与输入空间的关系成为了可能,慢慢地大家也开始都关注起深度学习的作用机制。
Ross Girshick等人提出了目标检测模型RCNN,开创了CNN用于目标检测的基准之一。随后研究者针对该系列提出Fast RCNN,Faster RCNN等等。

2014年

GoogLeNet和VGGNet分别被提出,获得ImageNet分类赛的冠亚军。VGGNet很好的展示了如何在先前网络架构的基础上通过简单地增加网络层数和深度就可以提高网络的性能,GoogleNet模型架构则提出了Inception结构,拓宽神经的宽度,成为了计算效率较高的深层模型基准之一。
2014年,无监督学习网络GAN横空出世,独立成了一个新的研究方向,被LeCun誉为下一代深度学习,此后GAN在各大领域,尤其是图像领域不断“建功立业”,并与各类CNN网络结构进行了融合。
2014年,Google启动AlphaGo的研究。

2015年

ResNet获得了ImageNet2012分类任务冠军,以3.57%的错误率表现超过了人类的识别水平,并以152层的网络架构创造了新的模型记录,自此残差连接在CNN的设计中随处可见。
2015年,全卷积网络Fully Convolutional Networks被提出用于图像分割,自此图像分割领域也即迎来大爆发。
2015年, AlphaGo击败欧洲围棋冠军樊麾成为第一个无需让子即可击败围棋职业棋手的计算机围棋程序。

2016年

2016年3月,由谷歌(Google)旗下DeepMind公司开发的AlphaGo(基于深度学习)与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册帐号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。

2017年

在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平。

深度学习的种类

基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网等
进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经网络等
深度神经网络:深度置信网络,卷积神经网络,深度残差网络,LSTM网络等

你可能感兴趣的:(深度学习重要时间点)