台大李宏毅教授机器学习HW2 作业二 赢家还是输家

首先数据文件https://pan.baidu.com/s/1BPCNWVSFUG_zryJuk4CiXA

好像在网上只能搜到这一个文件,是一个4000*58的表格,其中最后一列表示标签,如果是0的话表示工资小于50k,如果是1表工资大于50k,前57列是一个人的不同属性,我们需要用这57个属性来预测一个人的工资是否会大于50k

由于只有一个文件,所以将文件的80%用作训练,其余部分用作测试。

import numpy as np
import pandas as pd


def read2train():
    path = 'F:\\python_book\\machine_learning\\spam_train.csv'
    t = pd.read_csv(path)
    t = t.iloc[:, 1:]
    data = np.array(t, float)
    index = int(data.shape[0]*0.8)
    train_x = data[:index, :-1]
    train_y = data[:index, -1]
    # 由于文件中的标签只有一列,但是这是一个二分类问题,所以我在这里进行了处理
    # 已知1表示大于50k 0表示小于50k,那么1-train_y的值若是1就表示小于50k的概率为1
    # 若是0就表示小于50k的概率为0,这样做是为了与sigmoid的结果求误差
    a = 1 - train_y
    train_y = np.vstack((train_y, a)).reshape(train_x.shape[0], -1)
    test_x = data[index:, :-1]
    test_y = data[index:, -1].reshape(test_x.shape[0], -1)
    a = 1 - test_y
    test_y = np.vstack((test_y, a)).reshape(test_x.shape[0], -1)
    return train_x, train_y, test_x, test_y

 

 

import numpy as np


def softmax(x):
    x = x - np.max(x)  # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))


'''
由于one-hot表示中t为0的元素的交叉熵也为0,因此针对这些元素的计算可以忽略。
只需要获得网络中在正确解标签处的输出即可计算交叉熵误差,1e-7 是为了防止出现负无穷大的结果
'''


def cross_entry_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = int(y.shape[0])
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


# 动量法更新参数

class Momentum:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None

    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)

        for key in params.keys():
            self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
            params[key] += self.v[key]


class AdaGrad:
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None

    def update(self, params, grads):
        if self.h is None:
            self.h = {}
        for key, val in params.items():
            self.h[key] = np.zeros_like(val)

        for key in params.keys():
            self.h[key] += grads[key]**2
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)


# 乘法层的实现,用来进行w*x+b的前向和后向传播

class Affine:
    def __init__(self, w, b):
        self.w = w
        self.b = b
        self.x = None
        self.dw = None
        self.db = None

    def forward(self, x):
        self.x = x
        return np.dot(x, self.w) + self.b

    def backward(self, dout):
        self.dw = np.dot(self.x.T, dout)
        dx = np.dot(dout, self.w.T)
        self.db = np.sum(dout, axis=0)
        return dx


# Sigmoid用来实现Sigmoid函数的前向和后向传播

class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        self.out = 1 / (1 + np.exp(-x))
        return self.out

    def backward(self, dout):
        dx = dout * (1 - self.out) * self.out
        return dx


# 对进过进行softmax计算出概率之后,求出交叉熵误差,这层反向传播的结果是y-t
# 最后面除以batch_size,则传给前面层的是单个数据的误差
# 我试了一下不写这句,好像收敛的幅度更大,但这种写法是我在参考书上看的,所以就照做了

class SoftMaxWithLoss:
    def __init__(self):
        self.loss = None  # 交叉熵误差
        self.y = None  # softmax的输出
        self.t = None  # 监督数据

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entry_error(self.y, self.t)
        return self.loss

    def backward(self):
        batch_size = self.y.shape[0]
        dx = (self.y - self.t) / batch_size
        return dx

 

 

from util import *
from collections import OrderedDict


class Net:
    def __init__(self, input_size, output_size):
        self.params = {}
        self.params['w1'] = np.random.randn(input_size, output_size)
        self.params['b1'] = np.zeros(output_size)

        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['w1'], self.params['b1'])
        self.layers['Sigmoid1'] = Sigmoid()
        self.lastLayer = SoftMaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)

    def gradient(self, x, t):
        loss = self.loss(x, t)
        dout = self.lastLayer.backward()
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        grads = {}
        grads['w1'] = self.layers['Affine1'].dw
        grads['b1'] = self.layers['Affine1'].db
        return grads

    def accuracy(self, x, t):
        y = self.predict(x)
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy

 

 

from read_Data import *
from logistic_regression import *

train_x, train_y, test_x, test_y = read2train()
network = Net(train_x.shape[1], 2)
Ada = AdaGrad(lr=0.001)
Mom = Momentum()
for i in range(100000):
    grads = network.gradient(train_x, train_y)
    # Mom.update(network.params, grads)
    Ada.update(network.params, grads)
    if i % 1000 == 0:
        acc = network.accuracy(test_x, test_y)
        print(i, acc)



最后准确率能达到90以上

 

下面这些图片来帮助大家理解相关公式的来由

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第1张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第2张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第3张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第4张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第5张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第6张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第7张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第8张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第9张图片

台大李宏毅教授机器学习HW2 作业二 赢家还是输家_第10张图片

 

补充:由于本人是新手,且网上关于李宏毅教授的作业二的资料较少,我就写了一个发出来,不管是代码的深度还是规范程度上来讲都得往后稍一稍,但我还是希望能帮助到在入门的各位同行们!冲就完事儿了

欢迎大家在下面评论讨论共同进步!

你可能感兴趣的:(机器学习)