- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 图像处理之蒸馏
醉后才知酒浓
面试题OpenCV图像处理人工智能计算机视觉深度学习
蒸馏什么是蒸馏蒸馏技术分类什么是轨迹一致性蒸馏(TCD)什么是蒸馏在图像处理领域,蒸馏是一种模型压缩和知识迁移的技术。它的基本思想是利用一个大型且复杂的模型(教师模型)来指导一个小型且简单的模型(学生模型)的训练。教师模型通常具有较高的性能和准确性,但由于其复杂性和计算成本,可能不适合在资源受限的环境中使用。因此,蒸馏的目标是将教师模型的知识转移到学生模型中,以便在保持或接近教师模型性能的同时,降
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 大模型训练和推理
李明朔
AIGC深度学习人工智能
文章目录一、NLP基础1.Tokenizer2.positionencoding3.注意力机制与transformer架构二、大模型训练1.SFT训练2.RLHF训练3.分布式并行训练技术(1)模型并行(2)数据并行4.MoE技术4.PEFT训练5.上下文扩展技术三、大模型推理1.模型压缩(1)剪枝(2)量化2.显存优化技术3.调度优化技术4.请求优化技术5.采样和解码加速6.模型并行策略7.其他
- 基于深度学习的高效模型压缩
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的高效模型压缩技术在确保模型性能的同时,显著减少了模型的存储需求和计算复杂度,从而使得深度学习模型能够更好地适应资源受限的环境(如移动设备、嵌入式系统)并加快推理速度。以下是关于高效模型压缩的详细讨论:1.模型压缩的背景与挑战随着深度学习模型的不断发展,模型规模和复杂性大幅增加,特别是在计算机视觉、自然语言处理等领域,模型通常包含数以亿计的参数。这种大规模模型虽然能够实现高精度,但其计
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 模型压缩开源项目:阿里-tinyNAS/微软NNI/华为-vega
清风2022
tinyNAS神经网络AutoMLvega
文章目录阿里-TinyNAS使用流程步骤一:搜索模型结构步骤二:导出模型结果步骤三:使用搜索的模型结构图像分类任务目标检测任务华为-vega简介定位优点缺点微软NNI简介定位优点缺点阿里-TinyNAShttps://github.com/alibaba/lightweight-neural-architecture-search聚焦NAS,进行合理的模块划分;更偏向算法使用平台,搜索得到精度较好
- 自然语言处理 | (13)kenLM统计语言模型构建与应用
CoreJT
自然语言处理自然语言处理(NLP)kenLM工具库统计语言模型n-gram智能纠错
本篇博客中我们将学习如何使用KenLM工具构建统计语言模型,并使用它完成一个典型的'智能纠错'文本任务。目录1.实验准备2.训练数据3.训练语言模型4.模型压缩5.模型加载6.智能纠错1.实验准备安装依赖#安装依赖!aptinstalllibboost-all-dev!aptinstalllibbz2-dev!aptinstalllibeigen3-dev下载KenLM并编译#下载kenlm压缩包
- 今日arXiv最热NLP大模型论文:微软提出SliceGPT,删除25%模型参数,性能几乎无损
夕小瑶
自然语言处理人工智能
引言:探索大型语言模型的高效压缩方法随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,它们对计算和内存资源的巨大需求成为了一个不容忽视的问题。为了缓解这些资源限制,研究者们提出了多种模型压缩方法,其中剪枝(pruning)技术因其在后训练阶段应用的潜力而备受关注。然而,现有的剪枝技术面临着需要额外数据结构支持和在当前硬件上受限的加速效果等挑战。在这篇博客中,我们将探讨一种新的剪枝方案——S
- 不容错过|大模型等各行业最新赛事汇总,速递给你!
会议之眼
人工智能阿里云微信
比赛动态1、AICAS2024大挑战:通用算力大模型推理性能软硬协同优化挑战赛比赛简介:选手基于通义千问-7B大语言模型,可从多角度提出相关方法(如模型压缩,参数稀疏,精度量化和结构剪枝等),并结合Arm架构硬件特性和开源软件资源(比如硬件BF16,矢量矩阵乘,ArmComputeLibrary等)来系统优化提升大模型在硬件上的推理性能。最终通过赛题组委会指定的测试方案获取选手的优化方法的评分。初
- Yolov8_obb旋转框检测,模型剪枝压缩
早茶和猫
旋转框模型剪枝YOLO剪枝目标检测算法人工智能
Yolov8_obb模型压缩之模型剪枝一、剪枝原理和pipleline参考:yolov5模型压缩之模型剪枝模型压缩(二)yolov5剪枝本次使用稀疏训练对channel维度进行剪枝,来自论文LearningEfficientConvolutionalNetworksThroughNetworkSlimming。其实原理很容易理解,我们知道bn层中存在两个可训练参数γ,β,输入经过bn获得归一化后的
- Threejs in autonomous driving -(2)模型精简
土肥圆_c1ab
在开发准备阶段建模同学都会提供一个车模,从前段考量一般来说超过100kb都算是大文件了,这个模型一般是obj+mtl文件,这两个一般都会超过MB。推动精简的话都非常都难。精简方案删减模型的顶点和面片模型压缩第一种专业性比较强,我们是搞不定的,那么就可以从第二种思路为出发点。通过万能的搜索引擎搜索我们可以找到被誉为3d业界的json格式的gltf。gltf简介。这里推荐两个工具obj2gltfhtt
- 训练和部署之间的区别-模型压缩
An_ich
深度学习python开发语言人工智能网络算法深度学习机器学习
神经网络训练神经网络训练的本质就是找到一个f(x),只不过是一个参数量很大的f(x)那么神经网络训练和部署之间的区别就是减少参数量为什么要减少参数量1.大模型不方便进行部署,网络的推断速度比较慢2.对于移动端等设备也没有这么强的算力3.对于网络训练的结果,也就是网络训练中学习到的知识和网络参数量两者的关系不是线性的,知识和参数量之间的关系更趋向于一个log函数怎样减少参数量1.减小参数的精度例如将
- AI模型压缩技术
SugarPPig
人工智能人工智能
模型压缩技术是指通过一系列方法和技巧,减小深度学习模型的大小和计算量,同时尽量保持模型的性能。这对于在资源受限的设备上部署模型、减少模型传输和存储成本以及提高模型推理速度都非常有用。以下是一些常见的模型压缩技术:参数剪枝(Pruning):通过删除模型中不重要的参数来减小模型的大小。剪枝方法可以基于参数的重要性进行选择,例如,通过设置阈值来删除小于该阈值的参数。量化(Quantization):将
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- 第五节课 LMDeploy 大模型量化部署实践(笔记)
幽径微澜
书生·浦语大模型实战营(笔记笔记python
来源:(5)LMDeploy大模型量化部署实践_哔哩哔哩_bilibili课程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md1.大模型部署背景(1)模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的要求,常常对需要对模型进行优化,例如模型压缩和硬件
- 【书生·浦语大模型实战营05】《(5)LMDeploy 大模型量化部署实践》学习笔记
songyuc
学习笔记
《(5)LMDeploy大模型量化部署实践》课程文档:《LMDeploy的量化和部署》1、大模型部署背景1.1模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的需求,常常需要对模型进行优化,例如模型压缩和硬件加速产品形态云端、边缘计算端、移动端1.2大模型特点内存开销巨大庞大的参数量。7B模型仅权重就需要14+G显存采用自回归生成token
- Model Compression and Acceleration Overview
Ada's
认知智能认知计算片上互联边缘计算系统科学神经科学认知科学专题《智能芯片》
模型压缩、模型加速模型压缩方法:能够有效降低参数冗余减少存储占用、通信带宽、计算复杂度利部署线性或非线性量化:1/2bits,int8和fp16等;结构或非结构剪枝:deepcompression,channelpruning和networkslimming等;网络结构搜索(NAS:NetworkArchitectureSearch):DARTS,DetNAS、NAS-FCOS、Proxyless
- 初识人工智能,一文读懂过拟合&欠拟合和模型压缩的知识文集(3)
普修罗双战士
人工智能专栏人工智能机器学习自然语言处理语言模型人机交互计算机视觉
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一人工智能专栏人工智能专业知识学习二人工智能专栏人工智能专业知识学习三人工智能专栏人工智能专业知识学习四人工智能专栏人工智能专业知识学习五人工智能专栏人工智能专业知识学习六人工智能专栏人工智能专业知
- 对 MODNet 其他模块的剪枝探索
Maitre Chen
剪枝算法深度学习人工智能计算机视觉
写在前面先前笔者分享了《对MODNet主干网络MobileNetV2的剪枝探索》,没想到被选为了CSDN每天值得看系列,因为笔者开设的专栏《MODNet-Compression探索之旅》仅仅只是记录笔者在模型压缩领域的探索历程,对此笔者深感荣幸,非常感谢官方大大的认可!!!接下来,笔者会加倍努力,创作更多优质文章,为社区贡献更多有价值、有意思的内容!!!!本文将分享笔者对MODNet网络结构内部其
- Knowledge Distillation (1) 模块替换之bert-of-theseus-上篇
小蛋子
更好的阅读体验请跳转至KnowledgeDistillation(1)模块替换之bert-of-theseus-上篇如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,那这艘船还是原来的那艘船吗?-普鲁塔克最近遇到一个需要对算法加速的场景,了解到了一个比较简洁实用的方法:Bert-of-theseus,了解了原理后参考代码实验后,验证了其有效性,所以总结一下。模型压缩模型在设计之初都
- 改进yolov7网络(从轻量化方面的8个方法)
qhchao
YOLO网络计算机视觉
当谈到目标检测领域时,YOLOv7(YouOnlyLookOncev7)是一种非常流行的深度学习网络模型。虽然YOLOv7已经在精度和速度方面取得了显著的改进,但我们仍然可以从轻量化角度来进一步优化该模型。以下是8条关于如何从轻量化角度改进YOLOv7网络的建议:1.模型压缩:使用轻量化的模型压缩技术,如剪枝(pruning)和量化(quantization),来减小YOLOv7的模型大小。通过剪
- 本地模型能力适配
道亦无名
人工智能人工智能
本地模型能力适配是指将多模态大模型应用于本地设备或特定场景时,需要进行的一种技术处理。由于多模态大模型通常需要较大的计算资源和存储空间,直接将其部署到本地设备上可能会面临性能和效率的瓶颈。因此,需要进行本地模型能力适配,以适应本地设备的计算能力和存储限制。具体来说,本地模型能力适配可以通过以下几种方式实现:模型压缩:通过减少模型的大小和计算复杂度,使其更加适合本地设备的计算和存储能力。例如,可以使
- 将大模型与小模型结合的8种常用策略分享,附17篇案例论文和代码
深度之眼
人工智能干货深度学习干货机器学习人工智能深度学习大模型小模型
现在我们对大模型的研究逐渐转向了“降耗增效”,通过结合高性能低耗资的小模型,实现更高效的计算和内存利用,达到满足特定场景的需求、降低成本和提高效率、提升系统性能以及增强适应性和扩展性的目的。那么如何将大模型与小模型结合?目前较常用的策略有模型压缩(蒸馏、剪枝)、提示语压缩、联合推理、迁移学习、权值共享、集成学习等。咱们今天就来简单聊聊这8种策略。部分策略的具体步骤以及每种策略相关的参考论文我也放上
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- 大模型听课笔记——书生·浦语(5)
亲爱的阿基米德^
笔记
LMDeploy的量化和部署1大模型部署简介模型部署:将训练好的模型在特定软硬件环境中启动的过程,使模型能够接受输入并返回结果。为了满足性能和效率的需求。常常需要对模型进行优化,例如模型压缩和硬件加速产品形态:云端、变韵计算端、移动端计算设备:CPU、GPU、NPU、TPU等大模型的特点:内存开销巨大庞大的参数量采用自回归生成token,需要缓存Attentiondek/v,带来巨大的内存开销动态
- 【书生·浦语】大模型实战营——第五课笔记
Horace_01
笔记人工智能python语言模型
教程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md视频链接:https://www.bilibili.com/video/BV1iW4y1A77P大模型部署背景关于模型部署通常需要模型压缩和硬件加速大模型的特点1、显存、内存花销巨大2、动态shape,输入输出数量不定3、相对视觉模型,LLM结构简单,大部
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep