根据S解开,可以得到极点。这里,为了方便处理,我们分为两种情况去解这个方程。当N为偶数的时候,
同样的,这里也使用了欧拉公式。归纳以上,极点的解为
上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。
N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /
log10 (Stopband/Cotoff) ));
然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,
这样的话,实部与虚部就还可以分开来计算。其代码实现为
typedef struct
{
double Real_part;
double Imag_Part;
} COMPLEX;
COMPLEX poles[N];
for(k = 0;k <= ((2*N)-1) ; k++)
{
if(Cotoff*cos((k+dk)*(pi/N)) < 0)
{
poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));
count++;
if (count == N) break;
}
}
这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,
int Complex_Multiple(COMPLEX a,COMPLEX b,
double *Res_Real,double *Res_Imag)
{
*(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
*(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);
return (int)1;
}
有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设
将其乘开,其大致的关系就像下图所示一样。
计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为
Res[0].Real_part = poles[0].Real_part;
Res[0].Imag_Part= poles[0].Imag_Part;
Res[1].Real_part = 1;
Res[1].Imag_Part= 0;
for(count_1 = 0;count_1 < N-1;count_1++)
{
for(count = 0;count <= count_1 + 2;count++)
{
if(0 == count)
{
Complex_Multiple(Res[count], poles[count_1+1],
&(Res_Save[count].Real_part),
&(Res_Save[count].Imag_Part));
}
else if((count_1 + 2) == count)
{
Res_Save[count].Real_part += Res[count - 1].Real_part;
Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
}
else
{
Complex_Multiple(Res[count], poles[count_1+1],
&(Res_Save[count].Real_part),
&(Res_Save[count].Imag_Part));
1 Res_Save[count].Real_part += Res[count - 1].Real_part;
Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
}
}
*(b+N) = *(a+N);
}
到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。
for(Count = 0;Count<=N;Count++)
{
for(Count_Z = 0;Count_Z <= N;Count_Z++)
{
Res[Count_Z] = 0;
Res_Save[Count_Z] = 0;
}
Res_Save [0] = 1;
for(Count_1 = 0; Count_1 < N-Count;Count_1++)
{
for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
{
if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2];
else if((Count_2 == (Count_1+1))&&(Count_1 != 0))
Res[Count_2] += -Res_Save[Count_2 - 1];
else Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
Res_Save[Count_Z] = Res[Count_Z] ;
Res[Count_Z] = 0;
}
}
for(Count_1 = (N-Count); Count_1 < N;Count_1++)
{
for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
{
if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2];
else if((Count_2 == (Count_1+1))&&(Count_1 != 0))
Res[Count_2] += Res_Save[Count_2 - 1];
else
Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];
}
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
Res_Save[Count_Z] = Res[Count_Z] ;
Res[Count_Z] = 0;
}
}
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
*(az+Count_Z) += pow(2,N-Count) * (*(as+Count)) *
Res_Save[Count_Z];
*(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z];
}
}
到此,我们就已经实现了一个数字滤波器。
#include
#include
#include
#include
#define pi ((double)3.1415926)
struct DESIGN_SPECIFICATION
{
double Cotoff;
double Stopband;
double Stopband_attenuation;
};
typedef struct
{
double Real_part;
double Imag_Part;
} COMPLEX;
int Ceil(double input)
{
if(input != (int)input) return ((int)input) +1;
else return ((int)input);
}
int Complex_Multiple(COMPLEX a,COMPLEX b
,double *Res_Real,double *Res_Imag)
{
*(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
*(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);
return (int)1;
}
int Buttord(double Cotoff,
double Stopband,
double Stopband_attenuation)
{
int N;
printf("Wc = %lf [rad/sec] \n" ,Cotoff);
printf("Ws = %lf [rad/sec] \n" ,Stopband);
printf("As = %lf [dB] \n" ,Stopband_attenuation);
printf("--------------------------------------------------------\n" );
N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /
log10 (Stopband/Cotoff) ));
return (int)N;
}
int Butter(int N, double Cotoff,
double *a,
double *b)
{
double dk = 0;
int k = 0;
int count = 0,count_1 = 0;
COMPLEX poles[N];
COMPLEX Res[N+1],Res_Save[N+1];
if((N%2) == 0) dk = 0.5;
else dk = 0;
for(k = 0;k <= ((2*N)-1) ; k++)
{
if(Cotoff*cos((k+dk)*(pi/N)) < 0)
{
poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));
count++;
if (count == N) break;
}
}
printf("Pk = \n" );
for(count = 0;count < N ;count++)
{
printf("(%lf) + (%lf i) \n" ,-poles[count].Real_part
,-poles[count].Imag_Part);
}
printf("--------------------------------------------------------\n" );
Res[0].Real_part = poles[0].Real_part;
Res[0].Imag_Part= poles[0].Imag_Part;
Res[1].Real_part = 1;
Res[1].Imag_Part= 0;
for(count_1 = 0;count_1 < N-1;count_1++)
{
for(count = 0;count <= count_1 + 2;count++)
{
if(0 == count)
{
Complex_Multiple(Res[count], poles[count_1+1],
&(Res_Save[count].Real_part),
&(Res_Save[count].Imag_Part));
//printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[0].Real_part,Res_Save[0].Imag_Part);
}
else if((count_1 + 2) == count)
{
Res_Save[count].Real_part += Res[count - 1].Real_part;
Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
}
else
{
Complex_Multiple(Res[count], poles[count_1+1],
&(Res_Save[count].Real_part),
&(Res_Save[count].Imag_Part));
//printf( "Res : (%lf) + (%lf i) \n" ,Res[count - 1].Real_part,Res[count - 1].Imag_Part);
//printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
Res_Save[count].Real_part += Res[count - 1].Real_part;
Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
//printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
}
//printf("There \n" );
}
for(count = 0;count <= N;count++)
{
Res[count].Real_part = Res_Save[count].Real_part;
Res[count].Imag_Part= Res_Save[count].Imag_Part;
*(a + N - count) = Res[count].Real_part;
}
//printf("There!! \n" );
}
*(b+N) = *(a+N);
//------------------------display---------------------------------//
printf("bs = [" );
for(count = 0;count <= N ;count++)
{
printf("%lf ", *(b+count));
}
printf(" ] \n" );
printf("as = [" );
for(count = 0;count <= N ;count++)
{
printf("%lf ", *(a+count));
}
printf(" ] \n" );
printf("--------------------------------------------------------\n" );
return (int) 1;
}
int Bilinear(int N,
double *as,double *bs,
double *az,double *bz)
{
int Count = 0,Count_1 = 0,Count_2 = 0,Count_Z = 0;
double Res[N+1];
double Res_Save[N+1];
for(Count_Z = 0;Count_Z <= N;Count_Z++)
{
*(az+Count_Z) = 0;
*(bz+Count_Z) = 0;
}
for(Count = 0;Count<=N;Count++)
{
for(Count_Z = 0;Count_Z <= N;Count_Z++)
{
Res[Count_Z] = 0;
Res_Save[Count_Z] = 0;
}
Res_Save [0] = 1;
for(Count_1 = 0; Count_1 < N-Count;Count_1++)
{
for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
{
if(Count_2 == 0)
{
Res[Count_2] += Res_Save[Count_2];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
else if((Count_2 == (Count_1+1))&&(Count_1 != 0))
{
Res[Count_2] += -Res_Save[Count_2 - 1];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
else
{
Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
}
//printf( "Res : ");
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
Res_Save[Count_Z] = Res[Count_Z] ;
Res[Count_Z] = 0;
//printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]);
}
//printf(" \n" );
}
for(Count_1 = (N-Count); Count_1 < N;Count_1++)
{
for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
{
if(Count_2 == 0)
{
Res[Count_2] += Res_Save[Count_2];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
else if((Count_2 == (Count_1+1))&&(Count_1 != 0))
{
Res[Count_2] += Res_Save[Count_2 - 1];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
else
{
Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];
//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);
}
}
// printf( "Res : ");
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
Res_Save[Count_Z] = Res[Count_Z] ;
Res[Count_Z] = 0;
//printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]);
}
//printf(" \n" );
}
//printf( "Res : ");
for(Count_Z = 0;Count_Z<= N;Count_Z++)
{
*(az+Count_Z) += pow(2,N-Count) * (*(as+Count)) * Res_Save[Count_Z];
*(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z];
//printf( " %lf " ,*(bz+Count_Z));
}
//printf(" \n" );
}
for(Count_Z = N;Count_Z >= 0;Count_Z--)
{
*(bz+Count_Z) = (*(bz+Count_Z))/(*(az+0));
*(az+Count_Z) = (*(az+Count_Z))/(*(az+0));
}
//------------------------display---------------------------------//
printf("bz = [" );
for(Count_Z= 0;Count_Z <= N ;Count_Z++)
{
printf("%lf ", *(bz+Count_Z));
}
printf(" ] \n" );
printf("az = [" );
for(Count_Z= 0;Count_Z <= N ;Count_Z++)
{
printf("%lf ", *(az+Count_Z));
}
printf(" ] \n" );
printf("--------------------------------------------------------\n" );
return (int) 1;
}
int main(void)
{
int count;
struct DESIGN_SPECIFICATION IIR_Filter;
IIR_Filter.Cotoff = (double)(pi/2); //[red]
IIR_Filter.Stopband = (double)((pi*3)/4); //[red]
IIR_Filter.Stopband_attenuation = 30; //[dB]
int N;
IIR_Filter.Cotoff = 2 * tan((IIR_Filter.Cotoff)/2); //[red/sec]
IIR_Filter.Stopband = 2 * tan((IIR_Filter.Stopband)/2); //[red/sec]
N = Buttord(IIR_Filter.Cotoff,
IIR_Filter.Stopband,
IIR_Filter.Stopband_attenuation);
printf("N: %d \n" ,N);
printf("--------------------------------------------------------\n" );
double as[N+1] , bs[N+1];
Butter(N,
IIR_Filter.Cotoff,
as,
bs);
double az[N+1] , bz[N+1];
Bilinear(N,
as,bs,
az,bz);
printf("Finish \n" );
return (int)0;
}