- GEE机器学习——利用最短距离方法进行土地分类和精度评定
此星光明
机器学习人工智能javascript分类最短距离gee云计算
最短距离方法最短距离方法(MinimumDistance)是一种常用的模式识别算法,用于计算样本之间的相似度或距离。该方法通过计算样本之间的欧氏距离或其他距离度量,来确定样本之间的相似程度或差异程度。最短距离方法的具体步骤如下:1.数据准备:收集并准备用于训练的数据集,确保数据集包含标记好的样本点。2.特征选择:根据问题的特点选择合适的特征,并对特征进行预处理(如归一化、标准化等)。3.计算距离:
- 基于STM32的数字图像处理与模式识别算法优化
嵌入式杂谈
stm32算法嵌入式硬件
基于STM32的数字图像处理与模式识别算法优化是一项涉及图像处理和机器学习领域的研究任务,旨在实现高效的图像处理和模式识别算法在STM32微控制器上的运行。本文将介绍基于STM32的数字图像处理与模式识别算法优化的原理和实现步骤,并提供相应的代码示例。1.概述数字图像处理和模式识别是计算机视觉领域的重要研究内容,广泛应用于物体检测、人脸识别、目标跟踪等领域。而在资源受限的嵌入式系统中,如STM32
- 身份证读卡器跟OCR有何区别?哪个好?
pictoexcel
图片转excel表格图片转excel图片转表格ocr
二代身份证读卡器(以下简称读卡器)和OCR(光学字符识别)是两种常见的身份证信息获取技术,它们在原理、功能和应用方面存在一些区别。下面将详细介绍二者的区别并探讨哪个更好。1.原理:-读卡器:读卡器是一种硬件设备,通过接触式或非接触式方式读取二代身份证芯片中的数据。它通过与身份证芯片的物理接触或无线通信方式,将身份证中的信息传输给计算机。-OCR:OCR是一种软件技术,通过图像处理和模式识别算法,将
- 计算机视觉与人工智能在医美人脸皮肤诊断方面的应用
知来者逆
人工智能计算机视觉皮肤检测皱纹检测毛孔黑头
一、人脸皮肤诊断方法近年来,随着计算机技术和人工智能的不断发展,中医领域开始逐渐探索利用这些先进技术来辅助面诊和诊断。在皮肤望诊方面,也出现了一些现代研究,尝试通过图像分析技术和人工智能算法来客观化地获取皮肤相关的色形参数,从而辅助中医面诊。一些研究将计算机视觉和图像处理技术应用于皮肤望诊,旨在提取皮肤颜色、纹理、斑点等特征,然后通过模式识别算法来进行分析和诊断。这些研究通常需要大量的医学图像数据
- 人工智能:人脸识别技术应用场景介绍
IT技术分享社区
人工智能人工智能人脸识别大数据python云计算
目录人脸识别介绍什么是人脸识别技术人脸识别的流程1、场景分类2、认证对比3、金融领保险应用3.1金融行业3.2保险行业4、安防交通领域4.1公园景点人脸识别闸机4.2高铁站进站人脸识别闸机5、警务领域5.1抓拍交通违法人脸识别介绍什么是人脸识别技术人脸识别技术是一种通过计算机技术和模式识别算法来识别和验证人脸的技术。它可以用于识别人脸的身份、检测人脸的表情、年龄、性别等特征,以及进行人脸比对和活体
- 基于YOLOv7开发构建MSTAR雷达影像目标检测系统
Together_CZ
YOLO目标检测目标跟踪
MSTAR(MovingandStationaryTargetAcquisitionandRecognition)数据集是一个基于合成孔径雷达(SyntheticApertureRadar,SAR)图像的目标检测和识别数据集。它是针对目标检测、机器学习和模式识别算法的研究和评估而设计的。MSTAR数据集由美国海军研究实验室(NavalResearchLaboratory,NRL)创建,该数据集包含
- C++(CMake)视觉OpenCV-Raspberry Pi图像处理-3D图像重建-面部界标检测-卷积神经网络车牌自动识别-深度神经网络面部检测和识别
亚图跨际
机器学习c++opencv图像处理
演示如何为桌面和小型嵌入式系统(如RaspberryPi)编写一些图像处理过滤器;使用SfM模块将场景重建为稀疏点云,包括相机位姿,以及如何使用多视图立体获取密集点云;使用人脸模块进行人脸界标(也称为人脸标记)检测的过程;图像分割和特征提取、模式识别基础知识和两种重要的模式识别算法,支持向量机(SVM)和深度神经网络(DNN);在图像上检测人脸的不同技术,从使用具有Haar特征的级联分类器的更经典
- LabVIEW灰度图像操作与运算(基础篇—2)
不脱发的程序猿
完成机器视觉系统的搭建、校准并且确认其可以采集检测目标的图像后,就可以集中精力开发各种图像分析、处理以及模式识别算法。为了设计准确性和鲁棒性都较高的算法,并提高其执行速度,一般需要事先对整幅图像或部分像素进行操作,使图像尺寸或形状更适合计算机处理。某些时候还要对图像进行算术和逻辑运算,以消除噪声或提高图像的对比度。这些前期的图像操作或运算不仅会在空间域增强图像,还能极大地提高后续算法的执行速度及其
- 前列腺癌论文笔记
银晗
论文阅读人工智能算法
名词解释MRF:磁共振指纹打印技术(MRFingerprinting)是近几年发展起来的最新磁共振技术,以一种全新的方法对数据进行采集、后处理和实现可视化。MRF使用一种伪随机采集方法,取代了过去为获得个体感兴趣的参数特征而使用重复系列数据的采集方法,并使之具有唯一的信号演变或“指纹”,即同时获得所研究的不同物质特性的功能。数据采集后的处理过程涉及一个模式识别算法,将“指纹”与预测信号演变的预定义
- 机器学习中的数学原理——逻辑回归
爱睡觉的咋
白话机器学习的数学学习笔记机器学习人工智能算法深度学习python
这个专栏主要是用来分享一下我在机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《白话机器学习中的数学——逻辑回归》!什么是逻辑回归算法逻辑回归(LogisticRegression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上是一种分类方法,在实际应用中,逻辑回归可以说是应用最广泛的机器学习算法之一。案例分析我们还是用
- matlab简单实验之二维数据降维
云507
matlab算法矩阵
实验目的1.通过实验操作进一步掌握主成分分析算法;2.掌握协方差矩阵及其计算;3.学会Matlab进行模式识别算法编写。实验原理1.随机生成一组类似于椭圆形2维数据(或使用课程资料中的pcaData.txt数据)pcaData.txt下载链接提取码:ayfm。并显示;其数据其实是一个2*45的矩阵。在二维坐标里显示是近似以个三点椭圆形。2.PCA算法实现;计算出特征向量,并在原数据中标出方向;3.
- 面向流行性疾病科普的用户问题理解与答案内容组织
米朵儿技术屋
综合技术探讨及方案专栏知识图谱人工智能
摘要【目的】为改善人们查找并理解科普信息的方式,构建基于流行性疾病知识图谱的问答系统,重点改进对用户问题的理解,以及对答案内容的组织,降低科普受众理解专业知识的门槛。【方法】基于多种健康信息源总结用户查询需求,采用AC多模式识别算法与BERT模型结合理
- LabVIEW灰度图像操作与运算(基础篇—2)
不脱发的程序猿
LabVIEW灰度图像操作与运算机器视觉图像处理
目录1、像素操作2、灰度图像操作2.1、图像平移、旋转2.2、图像缩小、放大2.3、图像对称变换2.4、3D可视化3、灰度图像运算3.1、图像平均降噪3.2、提取夜视仪闪光故障点3.3、人体骨骼图像增强完成机器视觉系统的搭建、校准并且确认其可以采集检测目标的图像后,就可以集中精力开发各种图像分析、处理以及模式识别算法。为了设计准确性和鲁棒性都较高的算法,并提高其执行速度,一般需要事先对整幅图像或部
- 【OpenCV学习笔记】【教程翻译】一(基于SVM和神经网络的车牌识别概述)
无敌三角猫
事件驱动-车牌识别
这章主要介绍自动车牌识别应用中需要的一些步骤,对于不同的场景需要采用不同的方法和技术。例如,红外摄像头(IRcamera),车的位置,灯光条件等等。我们可以做个自动检测车牌的应用,其中含有车牌的图片在距离车2-3米拍摄,光线条件模糊(ambiguous),汽车车牌有不平行于地面的小的透视畸变。本章的主要目的是介绍图像分割和特征提取和模式识别基础。两种主要的模式识别算法是支持向量机和人工神经网络。在
- OCR:精准、稳定、易用的文字识别
Amber
ocr人工智能
OCR:精准、稳定、易用的文字识别大家好,今天给大家介绍精准、稳定、易用的文字识别应用服务OCR。OCR是英文光学字符识别的缩写,通常叫法为文字识别。它的工作原理是通过扫描仪或数码相机等光学输入设备来获取纸张上的文字图片信息,利用各种模式识别算法,分析文字形态特征,判断出合适的标准编码,然后按照通用的格式,存储在文本文件中。由此可见OCR实际上是让计算机认字,实现文字的自动输入,它是一种快捷、省力
- OCR:精准、稳定、易用的文字识别
Amber
ocr人工智能
OCR:精准、稳定、易用的文字识别大家好,今天给大家介绍精准、稳定、易用的文字识别应用服务OCR。OCR是英文光学字符识别的缩写,通常叫法为文字识别。它的工作原理是通过扫描仪或数码相机等光学输入设备来获取纸张上的文字图片信息,利用各种模式识别算法,分析文字形态特征,判断出合适的标准编码,然后按照通用的格式,存储在文本文件中。由此可见OCR实际上是让计算机认字,实现文字的自动输入,它是一种快捷、省力
- 模式识别 评价方法 ROC曲线, DET曲线, FPPW, FPPI etc.
Life_XY
图像处理算法
模式识别评价方法===>ROC曲线DET曲线FPPWFPPI因个人在做模式识别相关的工作,模式识别算法最终的性能评价是关键。但苦于网上很难找到具体、详细的评价流程、方法以及代码,所以本人打算近期准备如题所示评价方法的整理工作,到时候会奉上方法介绍、基础代码(matlab版),以帮助更多像我这样对这些方法有些迷茫的人。暂时提供matlab中自带的ROC,DET曲线绘制函数:perfcurve()具体
- 什么是OCR
nnsword
软件工程
OCR是英文OpticalCharacterRecognition的缩写,意思是光学字符识别,也可简单地称为文字识别,是文字自动输入的一种方法。它通过扫描和摄像等光学输入方式获取纸张上的文字图像信息,利用各种模式识别算法分析文字形态特征,判断出汉字的标准编码,并按通用格式存储在文本文件中,所以,OCR是一种非常快捷、省力的文字输入方式,也是在文字量比较大的今天,很受人们欢迎的一种输入方式。OCR的
- OCR文字识别
立行独见
博闻广志
OCR是英文OpticalCharacterRecognition的缩写,意思是光学字符识别,也可简单地称为文字识别,是文字自动输入的一种方法。它通过扫描和摄像等光学输入方式获取纸张上的文字图像信息,利用各种模式识别算法分析文字形态特征,判断出汉字的标准编码,并按通用格式存储在文本文件中,所以,OCR是一种非常快捷、省力的文字输入方式,也是在文字量比较大的今天,很受人们欢迎的一种输入方式。OCR的
- 什么是大数据,模式识别和人工智能算法实现
青润
最近青润去了一趟阿坝州红原县,是为了我们的牦牛穿戴设备过去进行运动数据采样的,结果遇到了一家深圳做车联网公司的cto,这位年轻的cto宣称自己公司有几十位来自bat的大数据专家程序员,年薪都是百万以上的,轻松搞定模式识别算法,并直言模式识别和大数据没有区别。青润听到这里,只好不再言语,还好,他们的产品有重大设计缺陷,被畜牧局的领导看出来了,所以,后续就不多说了,我们还在继续推动有角动物智能放牧机器
- 利用机器学习进行K线量化模式识别分析(收藏)
小壁虎的春天
量化交易
谷歌Deepmind研发的围棋程序阿尔法狗(AlphaGo)打败了围棋职业选手的新闻,大家可能都关注过。阿尔法狗采用了蒙特卡洛树搜索算法、机器学习算法和深度神经网络技术。对阿法尔狗进行训练,可以让程序进行深度学习。程序算法也可以用在股票趋势分析上。今天就给大家讲讲如何通过程序,识别k线趋势变化。当然,我们给大家讲的模式识别算法没有阿尔法狗那么复杂。图1基于聚类分析的k线图(candlestick)
- 模式识别hw3-------常见模式识别算法用于人脸图片性别识别
bizer_csdn
模式识别讲义
仍然感谢助教和队友,本文承接http://blog.csdn.net/bizer_csdn/article/details/54755843实验平台为Matlab,并需要一些开源工具包本次作业共采用了5种方法,其对应实验结果如下:vgg+PCA+LDA+SVMAdaBoost+LBP+LDALBP\Fisherface+KNNSIFT特征点+PCA+SVMSIFT特征点+随机森林91.70%94.
- 几款OCR识别软件
byxdaz
图像处理与识别
几款OCR识别软件汉王OCR在最近几年中,OCR识别技术随着扫描仪的普及得到了飞速的发展,扫描、识别软件的性能不断强大并向智能化不断升级发展。OCR是英文OpticalCharacterRecognition的缩写,意思为光学字符识别,通称为文字识别,它的工作原理为通过扫描仪或数码相机等光学输入设备获取纸张上的文字图片信息,利用各种模式识别算法分析文字形态特征,判断出汉字的标准编码,并按通用格式存
- 指纹模式识别算法源码及其测试和应用方法
岩枭
C++
指纹算法需求指纹特征值生成、比对API库需求:可输出指纹图像。图像格式为bmp,小于等于500DPI,不大于50K。可输出指纹模板。生成模板需要至少采集几次指纹需说明,建议不超过三次。模板大小不超过1K。模板生成时间不大于1秒。可输出指纹特征值(可以是非字符串格式)。特征值大小不超过512B。可输出指纹特征值字符串。字符串为可见字符,长度不超1024。指纹比对时,支持输入指纹特征值字符串比对。指纹
- 几种常见模式识别算法整理和总结
蓝白天际线
人工智能
这学期选了门模式识别的课。发现最常见的一种情况就是,书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来本质的原理那么简单,自己一开始只不过被那些看似formidable的细节吓到了。所以在这里把自己所学的一些点记录下来,供备忘,也供参考。1.K-NearestNeighborK-NN可以说是一种最直接的用来分类未知数据的方法。基本通过下面这张图跟文字说
- 几种常见模式识别算法整理和总结
scyscyao
这学期选了门模式识别的课。发现最常见的一种情况就是,书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来本质的原理那么简单,自己一开始只不过被那些看似formidable的细节吓到了。所以在这里把自己所学的一些点记录下来,供备忘,也供参考。1.K-NearestNeighborK-NN可以说是一种最直接的用来分类未知数据的方法。基本通过下面这张图跟文字说
- CNN中卷积核与卷积运算的前向推导与推导过程
技术烧
CNN神经网络算法是常用的模式识别算法,该算法通过卷积运算将图片特征存储到多个卷积核中,卷积核通过算法的反向传输一步步逼近于图片特征,最常用的反向传导方法是BP反向传导方法,采用最速下降法,将结果误差传递到每一个过程参数中,对于该方法在后面会做专门的介绍,本文主要介绍CNN神经网络中卷积步骤的前向与反向传导过程。为何会专门开这个题目来讨论,因为在很多的博文中,只是很随意介绍该算法的过程,更多的是通
- OCR:精准、稳定、易用的文字识别
华为云学院
OCR:精准、稳定、易用的文字识别大家好,今天给大家介绍精准、稳定、易用的文字识别应用服务OCR。OCR是英文光学字符识别的缩写,通常叫法为文字识别。它的工作原理是通过扫描仪或数码相机等光学输入设备来获取纸张上的文字图片信息,利用各种模式识别算法,分析文字形态特征,判断出合适的标准编码,然后按照通用的格式,存储在文本文件中。由此可见OCR实际上是让计算机认字,实现文字的自动输入,它是一种快捷、省力
- iOS老司机转战Java后台--1
robyzhou
小弟08年本科毕业,过去11年的时间,做过嵌入式开发(单片机,ARM+Linux),做过手机JVM,做过MacOS开发,做过模式识别算法开发,做过iOS开发,做过很短一段时间的区块链开发,现在终于转战到Java后台了。打算写下一些转战Java后台的流水账,每一段时间记录一下,转换平台过程中遇到的问题,和学习到的新东西。过去5年时间,都一直在做iOS,就是那种1年经验用了5年的老司机,今年7月份开始
- 感知机(Perceptron)
SongGu1996
机器学习
基础不牢,地动山摇。感知机(Perceptron),也叫感知器,它是二分类的线性模型,在模式识别算法的历史上占有重要的地位。感知机的输入为样本的特征向量,输出为样本的类别,取和二值。具体方法为:给样本的每一维特征引入一个相乘的权重来表达每个特征的重要程度,然后对乘积求和后加上偏置项。将结果送入符号函数,利用符号函数的二值特性将样本划分为两类。所以,训练感知机的目标可以概括为:寻找合适的权值和偏置,
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found