OpenCL的学习

环境:CentOS7 显卡:NVIDIA  按照http://blog.csdn.net/fly_yr/article/details/49796649配置好OpenCL   然后按照:https://docs.google.com/document/pub?id=1NPo1TK30IOYZxI53t_V3uenSHTMSFYs5cupVDniqVK4   运行这个小例子测试是否配置好了  本来我一直报错说:failed to load kernel.  把代码中这一句fp = fopen("vector_add_kernel.cl", "r");改成绝对路径 比如我的是fp = fopen("/home/.../vector_add_kernel.cl", "r");即可 哦中间还报了一个小错误说头文件‘CL/cl.h’没有这个目录或头文件 解决办法:yum install opencl-headers就不报错了。 出来是两个非负整数相加等于1000的所有可能。

1、我是先对着上面那个程序  然后看这个博客 http://blog.csdn.net/leonwei/article/category/1410041 初步了解OpenCL

2、对着http://blog.csdn.net/lien0906/article/category/2925315   http://blog.csdn.net/Augusdi/article/category/1687179 进一步熟悉 OpenCV的OCL模块就是支持OpenCL的哦   如果只是用OpenCL进行图像开发 就用这个应该就够了吧  但目前好像上面包含的函数比较少哎  相同部分可跳过   

3、对着http://www.cnblogs.com/mikewolf2002/category/343145.html  学习

4、上面都看完后 按照http://www.cnblogs.com/mikewolf2002/archive/2012/09/11/2680689.html 这位大神的OpenCL系列 有很多篇。我看到图像旋转这里:

这之前几篇还有一个向量相加的小程序:因为我是linux  改了点:

#include 
#include 
#ifdef __APPLE__
#include 
#else
#include 
#endif
#define MAX_SOURCE_SIZE (0x100000)
int main(void)
{
        // Create the two input vectors
        int i;
        const int LIST_SIZE = 100000;
        int *A = (int*) malloc(sizeof(int) * LIST_SIZE);
        int *B = (int*) malloc(sizeof(int) * LIST_SIZE);
        for (i = 0; i < LIST_SIZE; i++)
        {
                A[i] = i;
                B[i] = LIST_SIZE - i;
        }
        /////////////////////////////////////// Load the kernel source code into the array source_str
        FILE *fp;
        char *source_str;
        size_t source_size;
        fp = fopen("/home/jumper/OpenCL_projects/HelloOpenCL/src/vector_add_kernel.cl", "r");
        if (!fp)
        	{
                fprintf(stderr, "Failed to load kernel.\n");
                exit(1);
        	}
        source_str = (char*) malloc(MAX_SOURCE_SIZE);
        source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);
        fclose(fp);
        ///////////////////////////////////////////////////////////// Get platform and device information
        cl_platform_id platform_id = NULL;
        cl_device_id device_id = NULL;
        cl_uint ret_num_devices;
        cl_uint ret_num_platforms;
        cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
        ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id,
                        &ret_num_devices);
        ///////////////////////////////////////////////////////////// Create an OpenCL context
        cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);
        ///////////////////////////////// Create a command queue
        cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0,
                        &ret);
        ///////////////////////////////// Create memory buffers on the device for each vector
        cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
                        LIST_SIZE * sizeof(int), NULL, &ret);
        cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
                        LIST_SIZE * sizeof(int), NULL, &ret);
        cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
                        LIST_SIZE * sizeof(int), NULL, &ret);
        // Copy the lists A and B to their respective memory buffers
        ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,
                        LIST_SIZE * sizeof(int), A, 0, NULL, NULL);
        ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0,
                        LIST_SIZE * sizeof(int), B, 0, NULL, NULL);
        // Create a program from the kernel source
        cl_program program = clCreateProgramWithSource(context, 1,
                        (const char **) &source_str, (const size_t *) &source_size, &ret);
        // Build the program
        ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
        // Create the OpenCL kernel
        cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);
        // Set the arguments of the kernel
        ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &a_mem_obj);
        ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &b_mem_obj);
        ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &c_mem_obj);
        // Execute the OpenCL kernel on the list
        size_t global_item_size = LIST_SIZE; // Process the entire lists
        size_t local_item_size = 1; // Process one item at a time
        ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
                        &global_item_size, &local_item_size, 0, NULL, NULL);
        // Read the memory buffer C on the device to the local variable C
        int *C = (int*) malloc(sizeof(int) * LIST_SIZE);
        ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0,
                        LIST_SIZE * sizeof(int), C, 0, NULL, NULL);
        // Display the result to the screen
        for (i = 0; i < LIST_SIZE; i++)
                printf("%d + %d = %d\n", A[i], B[i], C[i]);
        // Clean up
        ret = clFlush(command_queue);
        ret = clFinish(command_queue);
        ret = clReleaseKernel(kernel);
        ret = clReleaseProgram(program);
        ret = clReleaseMemObject(a_mem_obj);
        ret = clReleaseMemObject(b_mem_obj);
        ret = clReleaseMemObject(c_mem_obj);
        ret = clReleaseCommandQueue(command_queue);
        ret = clReleaseContext(context);
        free(A);
        free(B);
        free(C);
        return 0;
}

结果:

OpenCL的学习_第1张图片

再看这个图像旋转的:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "gclFile.h"
//#include "gclTimer.h"
#include "gFreeImage.h"
using namespace std;

int waitForEventAndRelease(cl_event *event)
{
	cl_int status = CL_SUCCESS;
	cl_int eventStatus = CL_QUEUED;
	while(eventStatus != CL_COMPLETE)
	{
		status = clGetEventInfo(*event,CL_EVENT_COMMAND_EXECUTION_STATUS,sizeof(cl_int),&eventStatus,NULL);
	}
	//status = clReleaseEvent(*event); //it causes error:No source available "0*0"
	return 0;
}


void cpu_rotate(unsigned char* inbuf, unsigned char* outbuf, int w, int h,float sinTheta, float cosTheta)
{
	int i, j;
	int xc = w/2;
	int yc = h/2;

	for(i = 0; i < h; i++)
	{
		for(j=0; j< w; j++)
		{
			int xpos =  ( j-xc)*cosTheta - (i-yc)*sinTheta+xc;    
			int ypos =  (j-xc)*sinTheta + ( i-yc)*cosTheta+yc; 

			if(xpos>=0&&ypos>=0&&xpos
他自己写了个类gFreeImage  方便读存图片 结果:

OpenCL的学习_第2张图片

5、后来发现这本书 《OpenCL Parallel Programming Development CookBook》就下载下来了  真的很好  而且提供了源代码 边运行代码边看书上的讲解 真的感觉不那么难了。 但我没全部照着运行 改动了的   

6、《OpenCL Parallel Programming Development CookBook》-Ch1

书上几个例子综合一下:

#include 
#include 
#include 
#include 
#include 
#include 
#ifdef APPLE
#include 
#else
#include 
#endif

void displayPlatformInfo(cl_platform_id id,
                         cl_platform_info param_name,
                         const char* paramNameAsStr) {
    cl_int error = 0;
    size_t paramSize = 0;
    error = clGetPlatformInfo( id, param_name, 0, NULL, ¶mSize );
    char* moreInfo = (char*)alloca( sizeof(char) * paramSize);
    error = clGetPlatformInfo( id, param_name, paramSize, moreInfo, NULL );
    if (error != CL_SUCCESS ) {
        perror("Unable to find any OpenCL platform information");
        return;
    }
    printf("%s: %s\n", paramNameAsStr, moreInfo);
}

void displayDeviceDetails(cl_device_id id,
                          cl_device_info param_name,
                          const char* paramNameAsStr) {
  cl_int error = 0;
  size_t paramSize = 0;

  error = clGetDeviceInfo( id, param_name, 0, NULL, ¶mSize );
  if (error != CL_SUCCESS ) {
    perror("Unable to obtain device info for param\n");
    return;
  }

  /* the cl_device_info are preprocessor directives defined in cl.h */
  switch (param_name) {
    case CL_DEVICE_TYPE: {
            cl_device_type* devType = (cl_device_type*) alloca(sizeof(cl_device_type) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, devType, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device info for param\n");
                return;
            }
            switch (*devType) {
              case CL_DEVICE_TYPE_CPU : printf("CPU detected\n");break;
              case CL_DEVICE_TYPE_GPU : printf("GPU detected\n");break;
              case CL_DEVICE_TYPE_ACCELERATOR : printf("Accelerator detected\n");break;
              case CL_DEVICE_TYPE_DEFAULT : printf("default detected\n");break;
            }
            }break;
    case CL_DEVICE_VENDOR_ID :
    case CL_DEVICE_MAX_COMPUTE_UNITS :
    case CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS : {
            cl_uint* ret = (cl_uint*) alloca(sizeof(cl_uint) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, ret, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device info for param\n");
                return;
            }
            switch (param_name) {
                case CL_DEVICE_VENDOR_ID: printf("\tVENDOR ID: 0x%x\n", *ret); break;
                case CL_DEVICE_MAX_COMPUTE_UNITS: printf("\tMaximum number of parallel compute units: %d\n", *ret); break;
                case CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: printf("\tMaximum dimensions for global/local work-item IDs: %d\n", *ret); break;
            }
         }break;
    case CL_DEVICE_MAX_WORK_ITEM_SIZES : {
            cl_uint maxWIDimensions;
            size_t* ret = (size_t*) alloca(sizeof(size_t) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, ret, NULL );

            error = clGetDeviceInfo( id, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(cl_uint), &maxWIDimensions, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device info for param\n");
                return;
            }
            printf("\tMaximum number of work-items in each dimension: ( ");
            for(cl_int i =0; i < maxWIDimensions; ++i ) {
                printf("%d ", ret[i]);
            }
            printf(" )\n");
            }break;
    case CL_DEVICE_MAX_WORK_GROUP_SIZE : {
            size_t* ret = (size_t*) alloca(sizeof(size_t) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, ret, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device info for param\n");
                return;
            }
            printf("\tMaximum number of work-items in a work-group: %d\n", *ret);
            }break;
    case CL_DEVICE_NAME :
    case CL_DEVICE_VENDOR : {
            char data[48];
            error = clGetDeviceInfo( id, param_name, paramSize, data, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device name/vendor info for param\n");
                return;
            }
            switch (param_name) {
                case CL_DEVICE_NAME : printf("\tDevice name is %s\n", data);break;
                case CL_DEVICE_VENDOR : printf("\tDevice vendor is %s\n", data);break;
            }
    } break;
    case CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE: {
            cl_uint* size = (cl_uint*) alloca(sizeof(cl_uint) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, size, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device name/vendor info for param\n");
                return;
            }
            printf("\tDevice global cacheline size: %d bytes\n", (*size)); break;
    } break;
    case CL_DEVICE_GLOBAL_MEM_SIZE:
    case CL_DEVICE_MAX_MEM_ALLOC_SIZE: {
            cl_ulong* size = (cl_ulong*) alloca(sizeof(cl_ulong) * paramSize);
            error = clGetDeviceInfo( id, param_name, paramSize, size, NULL );
            if (error != CL_SUCCESS ) {
                perror("Unable to obtain device name/vendor info for param\n");
                return;
            }
            switch (param_name) {
                case CL_DEVICE_GLOBAL_MEM_SIZE: printf("\tDevice global mem: %ld mega-bytes\n", (*size)>>20); break;
                case CL_DEVICE_MAX_MEM_ALLOC_SIZE: printf("\tDevice max memory allocation: %ld mega-bytes\n", (*size)>>20); break;
            }
    } break;

  } //end of switch

}

void displayDeviceInfo(cl_platform_id id,
                       cl_device_type dev_type) {
    /* OpenCL 1.1 device types */
    cl_int error = 0;
    cl_uint numOfDevices = 0;

    /* Determine how many devices are connected to your platform */
    error = clGetDeviceIDs(id, dev_type, 0, NULL, &numOfDevices);
    if (error != CL_SUCCESS ) {
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }
    cl_device_id* devices = (cl_device_id*) alloca(sizeof(cl_device_id) * numOfDevices);

    /* Load the information about your devices into the variable 'devices' */
    error = clGetDeviceIDs(id, dev_type, numOfDevices, devices, NULL);
    if (error != CL_SUCCESS ) {
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }
    printf("Number of detected OpenCL devices: %d\n", numOfDevices);
    /* We attempt to retrieve some information about the devices. */
    for(int i = 0; i < numOfDevices; ++ i ) {
        displayDeviceDetails( devices[i], CL_DEVICE_TYPE, "CL_DEVICE_TYPE" );
        displayDeviceDetails( devices[i], CL_DEVICE_NAME, "CL_DEVICE_NAME" );
        displayDeviceDetails( devices[i], CL_DEVICE_VENDOR, "CL_DEVICE_VENDOR" );
        displayDeviceDetails( devices[i], CL_DEVICE_VENDOR_ID, "CL_DEVICE_VENDOR_ID" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_MEM_ALLOC_SIZE, "CL_DEVICE_MAX_MEM_ALLOC_SIZE" );
        displayDeviceDetails( devices[i], CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, "CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE" );
        displayDeviceDetails( devices[i], CL_DEVICE_GLOBAL_MEM_SIZE, "CL_DEVICE_GLOBAL_MEM_SIZE" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_COMPUTE_UNITS, "CL_DEVICE_MAX_COMPUTE_UNITS" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_ITEM_SIZES, "CL_DEVICE_MAX_WORK_ITEM_SIZES" );
        displayDeviceDetails( devices[i], CL_DEVICE_MAX_WORK_GROUP_SIZE, "CL_DEVICE_MAX_WORK_GROUP_SIZE" );
    }
}

void createAndReleaseContext(cl_platform_id id,
                             cl_device_type dev_type) {
    /* OpenCL 1.1 device types */
    cl_int error = 0;
    cl_uint numOfDevices = 0;

    /* Determine how many devices are connected to your platform */
    error = clGetDeviceIDs(id, dev_type, 0, NULL, &numOfDevices);
    if (error != CL_SUCCESS ) {
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }
    cl_device_id* devices = (cl_device_id*) alloca(sizeof(cl_device_id) * numOfDevices);

    /* Load the information about your devices into the variable 'devices' */
    error = clGetDeviceIDs(id, dev_type, numOfDevices, devices, NULL);
    if (error != CL_SUCCESS ) {
        perror("Unable to obtain any OpenCL compliant device info");
        exit(1);
    }
    printf("Number of detected OpenCL devices: %d\n", numOfDevices);

    /*
       We attempt to create contexts for each device we find, report it
       and release the context. Once a context is created, its context is implicitly
       retained and so you don't have to invoke 'clRetainContext'
     */
    for(int i = 0; i < numOfDevices; ++ i ) {
        cl_context context = clCreateContext(NULL, 1, &devices[i], NULL, NULL, &error);
        cl_uint ref_cnt = 0;
        if (error != CL_SUCCESS) {
            perror("Can't create a context");
            exit(1);
        }
        error = clGetContextInfo(context, CL_CONTEXT_REFERENCE_COUNT, sizeof(ref_cnt), &ref_cnt, NULL);
        if (error != CL_SUCCESS) {
            perror("Can't obtain context information");
            exit(1);
        }
        printf("Reference count of device is %d\n", ref_cnt);

        // Release the context
        clReleaseContext(context);
    }
}

int main() {
	//Get all the platforms that support OpenCL!
   cl_platform_id* platforms;
   cl_uint numOfPlatforms;
   cl_int  error;
   error = clGetPlatformIDs(0, NULL, &numOfPlatforms);
   if(error != CL_SUCCESS) {
      perror("Unable to find any OpenCL platforms");
      exit(1);
   }
   printf("Number of OpenCL platforms found: %d\n", numOfPlatforms);

   //Get the addresses of every platform. Allocate memory for the number of installed platforms.
   // alloca(...) occupies some stack space but is automatically freed on return
   platforms = (cl_platform_id*) alloca(sizeof(cl_platform_id) * numOfPlatforms);
   error = clGetPlatformIDs(numOfPlatforms, platforms, NULL);
   if(error != CL_SUCCESS) {
      perror("Unable to find any OpenCL platforms");
      exit(1);
   }

   //visit every platform by their addresses.
   for(cl_uint i = 0; i < numOfPlatforms; ++i) {
	   //platforms information
        displayPlatformInfo( platforms[i], CL_PLATFORM_PROFILE, "CL_PLATFORM_PROFILE" );
        displayPlatformInfo( platforms[i], CL_PLATFORM_VERSION, "CL_PLATFORM_VERSION" );
        displayPlatformInfo( platforms[i], CL_PLATFORM_NAME,    "CL_PLATFORM_NAME" );
        displayPlatformInfo( platforms[i], CL_PLATFORM_VENDOR,  "CL_PLATFORM_VENDOR" );
        displayPlatformInfo( platforms[i], CL_PLATFORM_EXTENSIONS, "CL_PLATFORM_EXTENSIONS" );
        //devices information
        displayDeviceInfo( platforms[i], CL_DEVICE_TYPE_ALL );
        //contexts information with devices
        createAndReleaseContext( platforms[i], CL_DEVICE_TYPE_ALL );
   }

   return 0;
}
结果:

OpenCL的学习_第3张图片

书上有句话解释了  不同的SDK对OpenCL platform和device的支持不一样  NVIDIA只支持GPU  AMD公司的支持CPU和GPU 等

    学完第一章,我试着写了个:

#include 
#include 
#include 
#include 
#include 
#include "gclFile.h"

void loadProgramSource(const char** files,
                       size_t length,
                       char** buffer,
                       size_t* sizes) {
	   /* Read each source file (*.cl) and store the contents into a temporary datastore */
	   for(size_t i=0; i < length; i++) {
	      FILE* file = fopen(files[i], "r");
	      if(file == NULL) {
	         perror("Couldn't read the program file");
	         exit(1);
	      }
	      fseek(file, 0, SEEK_END);
	      sizes[i] = ftell(file);
	      rewind(file); // reset the file pointer so that 'fread' reads from the front
	      buffer[i] = (char*)malloc(sizes[i]+1);
	      buffer[i][sizes[i]] = '\0';
	      fread(buffer[i], sizeof(char), sizes[i], file);
	      fclose(file);
	   }
}

int main(){

	//first : platform
	cl_uint platformnum;
	cl_int error;
	error=clGetPlatformIDs(0,NULL,&platformnum);
	if(error!=CL_SUCCESS){
		printf("no suitable platforms for OpenCL\n");
		return -1;
	}
	cl_platform_id* platformIDs;
	platformIDs=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformnum);
	error=clGetPlatformIDs(platformnum,platformIDs,NULL);
	if(error!=CL_SUCCESS){
		printf("platforms addresses error\n");
		return -1;
	}


	//second:device
	cl_device_id device;
	char platformName[100];
	error = clGetPlatformInfo(platformIDs[0],CL_PLATFORM_VENDOR,sizeof(platformName),platformName,NULL);
	if(error!=CL_SUCCESS){
		printf("wrong when getting the platform in use.\n");
		return -1;
	}
	cl_platform_id platformInUse = platformIDs[0];
	clGetDeviceIDs(platformInUse,CL_DEVICE_TYPE_GPU,1,&device,NULL);


	//third: context and CommandQueue
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue = clCreateCommandQueue( context,device,CL_QUEUE_PROFILING_ENABLE, &error );
	if (error != CL_SUCCESS) {
		perror("Unable to create command-queue");
		exit(1);
	}


	//forth: load kernel(more than one) and create program to compile it!!!
	const char *file_names[] = {"simple.cl", "simple_2.cl"};
	const int NUMBER_OF_FILES = 2;
	char* buffer[NUMBER_OF_FILES];  /*remember:kernel buffer must be released!*/
	size_t sizes[NUMBER_OF_FILES];
	loadProgramSource(file_names, NUMBER_OF_FILES, buffer, sizes);
	cl_program program = clCreateProgramWithSource(context, NUMBER_OF_FILES, (const char**)buffer, sizes, &error);
	if(error != CL_SUCCESS) {
	  perror("Can't create the OpenCL program object");
	  return -1;
	}
	error = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
					/* build the program using build-options statically:
							 const char options[] = "-cl-finite-math-only -cl-no-signed-zeros";
							 error = clBuildProgram(program, 1, &device, options, NULL, NULL);
						 There is dynamic solution to build the program by using argv in command line. such as:
							 error = clBuildProgram(program, 1, &device, argv[1], NULL, NULL);
					 */
	char *program_log;
	size_t log_size;
	if(error != CL_SUCCESS) {
	  clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
	  program_log = (char*) malloc(log_size+1);
	  program_log[log_size] = '\0';
	  clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,log_size+1, program_log, NULL);
	  printf("\n=== ERROR ===\n\n%s\n=============\n", program_log);
	  free(program_log);
	  return -1;
	}
					/* Query the program as to how many kernels were detected and how many variables in every kernel function */
	cl_uint numOfKernels;
	error = clCreateKernelsInProgram(program, 0, NULL, &numOfKernels);
	if (error != CL_SUCCESS) {
		perror("Unable to retrieve kernel count from program");
		exit(1);
	}
	cl_kernel* kernels = (cl_kernel*) alloca(sizeof(cl_kernel) * numOfKernels);/*once I saw "alloca() can be free automatically",but here?only cl_kernel cannot*/
	error = clCreateKernelsInProgram(program, numOfKernels, kernels, NULL);
	for(cl_uint i = 0; i < numOfKernels; i++) {
		char kernelName[32];
		cl_uint argCnt;
		clGetKernelInfo(kernels[i], CL_KERNEL_FUNCTION_NAME, sizeof(kernelName), kernelName, NULL);
		clGetKernelInfo(kernels[i], CL_KERNEL_NUM_ARGS, sizeof(argCnt), &argCnt, NULL);
		printf("Kernel name: %s with arity: %d\n", kernelName, argCnt);
	}


	//fifth: Buffer (prepare the real arguments of the kernel function.for READ Buffer :Received real arguments from host):
	const cl_int mem_size=900;
	cl_mem a_in = clCreateBuffer(context, CL_MEM_READ_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
	cl_mem a_in2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
	cl_mem b_in = clCreateBuffer(context, CL_MEM_READ_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
	cl_mem b_in2 = clCreateBuffer(context, CL_MEM_READ_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
	cl_mem c_in = clCreateBuffer(context, CL_MEM_WRITE_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
	cl_mem c_in2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY,mem_size*sizeof(cl_int), NULL, NULL);
					/*real arguments */
	cl_int real_a[mem_size],real_a2[mem_size];
	cl_int real_b[mem_size],real_b2[mem_size];
	for(cl_int i=0;i
同时让2个kernels运行的 我不太会 所以上面是试着写的 果然出来有点问题C[]和C2[]的结果那里 怎么是随机的数值呢 应该是900啊 难道在kernel里没有运行?看:

OpenCL的学习_第4张图片
应该哪里我写得有点问题  可能等看了第二章就明白了。

7、《OpenCL Parallel Programming Development CookBook》-Ch2

第一例子 自己写:

#include 
#include 
#include 
#include 
#include 

void loadProgramSource(const char** files,
                       size_t length,
                       char** buffer,
                       size_t* sizes) {
	   /* Read each source file (*.cl) and store the contents into a temporary datastore */
	   for(size_t i=0; i < length; i++) {
	      FILE* file = fopen(files[i], "r");
	      if(file == NULL) {
	         perror("Couldn't read the program file");
	         exit(1);
	      }
	      fseek(file, 0, SEEK_END);
	      sizes[i] = ftell(file);
	      rewind(file); // reset the file pointer so that 'fread' reads from the front
	      buffer[i] = (char*)malloc(sizes[i]+1);
	      buffer[i][sizes[i]] = '\0';
	      fread(buffer[i], sizeof(char), sizes[i], file);
	      fclose(file);
	   }
}

typedef struct UserData {
    int x;
    int y;
    int z;
    int w;
} UserData;

int main(){

	cl_uint platformNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformNum);
	if(status!=CL_SUCCESS){
		printf("cannot get platforms number.\n");
		return -1;
	}
	cl_platform_id* platforms;
	platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformNum);
	status=clGetPlatformIDs(platformNum,platforms,NULL);
	if(status!=CL_SUCCESS){
		printf("cannot get platforms addresses.\n");
		return -1;
	}
	cl_platform_id platformInUse=platforms[0];
	cl_device_id device;
	clGetDeviceIDs(platformInUse,CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE, &status);
	const char* files[]={"user_test.cl"};
	const int kernelnum=1;
	char *buffer[kernelnum];
	size_t sizes[kernelnum];
	loadProgramSource(files, kernelnum, buffer, sizes);
	cl_program program=clCreateProgramWithSource(context,kernelnum,(const char**)buffer,sizes,&status);
	if(status != CL_SUCCESS) {
	  perror("Can't create the OpenCL program object");
	  return -1;
	}
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);
	if(status != CL_SUCCESS) {
	  perror("Can't build the OpenCL program object");
	  return -1;
	}
	UserData realdata;
	realdata.x=3;
	realdata.y=4;
	realdata.z=5;
	realdata.w=6;
	cl_mem datain=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(UserData),NULL,NULL);
	status=clEnqueueWriteBuffer(queue,datain,CL_TRUE,0,sizeof(UserData),&realdata,0,NULL,NULL);
	if(status!=CL_SUCCESS){
		perror("cannot write data into buffer.\n");
		return -1;
	}
	cl_kernel kernel = clCreateKernel(program, "hello", &status);
	status=clSetKernelArg(kernel,0,sizeof(cl_mem),(void*)&datain);

	size_t global_item_size=1;
	size_t local_item_size=1;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);

	UserData *databack = (UserData*) alloca(sizeof(UserData)) ;
	status = clEnqueueReadBuffer(queue, datain, CL_TRUE, 0, sizeof(UserData), databack, 0, NULL, NULL);
	printf("x:%d  y: %d  z:%d w:%d\n", databack->x,databack->y,databack->z,databack->w);

	clReleaseCommandQueue(queue);
	clReleaseKernel(kernel);
	free(buffer[0]);
	clReleaseProgram(program);
	clReleaseContext(context);
	status = clReleaseMemObject(datain);
	return 0;
}
结果是对的:

OpenCL的学习_第5张图片

刚看了下书上这个例子的源码  它的和我的略不一样 在编译kernel的那个函数 还有实参它有多个实例化后的结构体 我只有一个 到目前为止 我发现我的这个例子虽然对了 但对workItem和workgroup以及device上lobal local的设置还不太会。可能后面就会介绍吧书上。

第二个例子:我觉得书上的是错的 因为本该UserData.w是在kernel上计算出来的 所以无论在host上w被初始化成什么经过kernel拷贝回来后一定是正确的x+y+z的结果,不然kernel执行就没有意义了:书上的例子源码:

#include 
#include 
#include 
#include 
typedef struct UserData {
    int x;
    int y;
    int z;
    int w;
} UserData;

void loadProgramSource(const char** files, size_t length,char** buffer,size_t* sizes) {
	   /* Read each source file (*.cl) and store the contents into a temporary datastore */
	   for(size_t i=0; i < length; i++) {
	      FILE* file = fopen(files[i], "r");
	      if(file == NULL) {
	         perror("Couldn't read the program file");
	         exit(1);
	      }
	      fseek(file, 0, SEEK_END);
	      sizes[i] = ftell(file);
	      rewind(file); // reset the file pointer so that 'fread' reads from the front
	      buffer[i] = (char*)malloc(sizes[i]+1);
	      buffer[i][sizes[i]] = '\0';
	      fread(buffer[i], sizeof(char), sizes[i], file);
	      fclose(file);
	   }
}

void displayBufferDetails(cl_mem memobj) {
    cl_mem_object_type objT;
    cl_mem_flags flags;
    size_t memSize;

    clGetMemObjectInfo(memobj, CL_MEM_TYPE, sizeof(cl_mem_object_type), &objT, 0);
    clGetMemObjectInfo(memobj, CL_MEM_FLAGS, sizeof(cl_mem_flags), &flags, 0);
    clGetMemObjectInfo(memobj, CL_MEM_SIZE, sizeof(size_t), &memSize, 0);

    char* str = '\0';
    switch (objT) {
        case CL_MEM_OBJECT_BUFFER: str = "Buffer or Sub-buffer";break;
        case CL_MEM_OBJECT_IMAGE2D: str = "2D Image Object";break;
        case CL_MEM_OBJECT_IMAGE3D: str = "3D Image Object";break;
    }

    char flagStr[128] = {'\0'};
    if(flags & CL_MEM_READ_WRITE)     strcat(flagStr, "Read-Write|");
    if(flags & CL_MEM_WRITE_ONLY)     strcat(flagStr, "Write Only|");
    if(flags & CL_MEM_READ_ONLY)      strcat(flagStr, "Read Only|");
    if(flags & CL_MEM_COPY_HOST_PTR)  strcat(flagStr, "Copy from Host|");
    if(flags & CL_MEM_USE_HOST_PTR)   strcat(flagStr, "Use from Host|");
    if(flags & CL_MEM_ALLOC_HOST_PTR) strcat(flagStr, "Alloc from Host|");

    printf("\tOpenCL Buffer's details =>\n\t size: %lu MB,\n\t object type is: %s,\n\t flags:0x%lx (%s) \n", memSize >> 20, str, flags, flagStr);
}

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);
	const char* files[]={"user_test.cl"};
	const int filesNum=1;
	char* buffer[filesNum];
	size_t sizes[filesNum];
	loadProgramSource(files,filesNum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filesNum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

	const int DATA_SIZE=5;
	UserData* ud_in = (UserData*) malloc( sizeof(UserData) * DATA_SIZE); // input to device
   UserData* ud_out = (UserData*) malloc( sizeof(UserData) * DATA_SIZE); // output from device
   for( int i = 0; i < DATA_SIZE; ++i) {
	  (ud_in + i)->x = i;
	  (ud_in + i)->y = i;
	  (ud_in + i)->z = i;
	  (ud_in + i)->w = i;//the result is wrong which seems the kernel function is not significant.
	  //(ud_in + i)->w = 3*i;
   }

   cl_kernel* kernels = (cl_kernel*) alloca(sizeof(cl_kernel) * 1);
   status = clCreateKernelsInProgram(program, 1, kernels, NULL);
   cl_mem UDObj = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(UserData) * DATA_SIZE, (void *)ud_in, &status);
   displayBufferDetails(UDObj);
   status = clSetKernelArg(kernels[0], 0, sizeof(cl_mem), &UDObj);
   status = clEnqueueTask(queue, kernels[0], 0, NULL, NULL);
   status = clEnqueueReadBuffer(queue, UDObj, CL_TRUE,  0,  sizeof(UserData) * DATA_SIZE,ud_out, 0, NULL, NULL);
   for(int i=0;i!=DATA_SIZE;i++){
	   printf("x:%d + y: %d + z:%d = w:%d\n", (ud_out[i]).x,(ud_out[i]).y,(ud_out[i]).z,(ud_out[i]).w);
   }

	clReleaseCommandQueue(queue);
	status = clReleaseMemObject(UDObj);
	clReleaseKernel(kernels[0]);
	free(buffer[0]);
	clReleaseProgram(program);
	clReleaseContext(context);
	free(ud_in);
   free(ud_out);
	return 0;
}
结果:

OpenCL的学习_第6张图片是错的 kernel根本执行没有了意义  如果用原来的3*i也是

我改成了下面这样:

#include 
#include 
#include 
#include 
typedef struct UserData {
    int x;
    int y;
    int z;
    int w;
} UserData;

void displayBufferDetails(cl_mem memobj);
void loadProgramSource(const char** files, size_t length,char** buffer,size_t* sizes);

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);
	const char* files[]={"user_test.cl"};
	const int filesNum=1;
	char* buffer[filesNum];
	size_t sizes[filesNum];
	loadProgramSource(files,filesNum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filesNum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

	const int DATA_SIZE=5;
	UserData ud_in[DATA_SIZE] ; // input to device
   UserData ud_out[DATA_SIZE]; // output from device
   for( int i = 0; i < DATA_SIZE; ++i) {
	  ud_in[ i].x = i;
	  ud_in[ i].y = i;
	  ud_in[ i].z = i;
	  ud_in[ i].w=  i; //the code will always be correct whatever w is.
   }

   cl_kernel kernel=clCreateKernel(program,"hello",&status);
   cl_mem UDObj = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(UserData) * DATA_SIZE, (void *)ud_in, &status);
   displayBufferDetails(UDObj);
   status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &UDObj);
   status=clEnqueueWriteBuffer(queue,UDObj,CL_TRUE,0,sizeof(UserData)*DATA_SIZE,ud_in,0,NULL,NULL);
   size_t global_item_size=DATA_SIZE;
	size_t local_item_size=1;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);
   //status = clEnqueueTask(queue, kernel, 0, NULL, NULL);
	status = clEnqueueReadBuffer(queue, UDObj, CL_TRUE, 0, sizeof(UserData)*DATA_SIZE, ud_out, 0, NULL, NULL);
	for(int i=0;i!=DATA_SIZE;i++){
		printf("x:%d + y: %d + z:%d = w:%d\n", (ud_out[i]).x,(ud_out[i]).y,(ud_out[i]).z,(ud_out[i]).w);
	}

	clReleaseCommandQueue(queue);
	status = clReleaseMemObject(UDObj);
	clReleaseKernel(kernel);
	free(buffer[0]);
	clReleaseProgram(program);
	clReleaseContext(context);
	return 0;
}
结果: OpenCL的学习_第7张图片
证明是对的  即使在host上被初始化为i  执行kernel后还是正确了  这才有意义嘛

下一个例子是sub-buffer的 我写了下运行了下 和源码对比 原来只有platform或device有多个时才能sub-buffer  不然会报错 我的电脑就是。

再下一个例子是events:延迟command queue中的命令 但这个例子:

#include 
#include 
#include 
#include 

void loadProgramSource(const char** files, size_t length,char** buffer,size_t* sizes) {
	   /* Read each source file (*.cl) and store the contents into a temporary datastore */
	   for(size_t i=0; i < length; i++) {
	      FILE* file = fopen(files[i], "r");
	      if(file == NULL) {
	         perror("Couldn't read the program file");
	         exit(1);
	      }
	      fseek(file, 0, SEEK_END);
	      sizes[i] = ftell(file);
	      rewind(file); // reset the file pointer so that 'fread' reads from the front
	      buffer[i] = (char*)malloc(sizes[i]+1);
	      buffer[i][sizes[i]] = '\0';
	      fread(buffer[i], sizeof(char), sizes[i], file);
	      fclose(file);
	   }
}

void CL_CALLBACK postProcess(cl_event event, cl_int status, void *data) {
	printf("%s\n", (char*)data);
}

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);
	const char* files[]={"sample_kernel.cl"};
	const int filesnum=1;
	char* buffer[filesnum];
	size_t sizes[filesnum];
	loadProgramSource(files,filesnum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filesnum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

	int i, j;
	float *A;
	float *B;
	float *C;
	A = (float *)alloca(4*4*sizeof(float));
	B = (float *)alloca(4*4*sizeof(float));
	C = (float *)alloca(4*4*sizeof(float));
	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			A[i*4+j] = i*4+j+1;
			B[i*4+j] = j*4+i+1;
		}
	}
	cl_kernel kernel=clCreateKernel(program,"sample",&status);
	cl_mem a_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem b_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem c_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);

	/*
	 * Creating an user event
	 * As a user event is created, its execution status is set to be CL_SUBMITTED
	 * and we tag the event to a callback so when event reaches CL_COMPLETE, it will
	 * execute postProcess
	 */
	cl_event event1 = clCreateUserEvent(context, &status);
	char* eventfarg4="Looks like its done.";
	clSetEventCallback(event1, CL_COMPLETE, &postProcess, eventfarg4);

	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&a_buffer);
	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&b_buffer);
	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&c_buffer);
	status=clEnqueueWriteBuffer(queue,a_buffer,CL_TRUE,0,sizeof(float)*4*4,A,0,NULL,NULL);
	//status=clEnqueueWriteBuffer(queue,b_buffer,CL_TRUE,0,sizeof(float)*4*4,B,0,NULL,NULL);
	status=clEnqueueWriteBuffer(queue,b_buffer,CL_TRUE,0,sizeof(float)*4*4,B,1,&event1,NULL);

	clSetUserEventStatus(event1, CL_COMPLETE);
	size_t global_item_size = 4;
	size_t local_item_size = 1;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);

	status = clEnqueueReadBuffer(queue, c_buffer, CL_TRUE, 0, 4*4*sizeof(float), C, 0, NULL, NULL);

	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			printf("%7.2f ", C[i*4+j]);
		}
		printf("\n");
	}

	clReleaseCommandQueue(queue);
	clReleaseKernel(kernel);
	clReleaseProgram(program);
	clReleaseMemObject(a_buffer);
	clReleaseMemObject(b_buffer);
	clReleaseMemObject(c_buffer);
	clReleaseContext(context);
	clReleaseEvent(event1);
	return 0;
}
但这个在写入A以后,就一直在等待event延迟,可是什么时候结束呢 ?我等了一会儿还是没有结束 我没看到这个CL_CALLBACK怎么定义结束的 看运行结果也是在写入A后感觉像卡死在event里了?!

下一个例子是创建2D buffer_memory的 第一次看到这种不用读kernel的 那这种有什么意义呢用OpenCL 怎么去加速呢?是不是只要有buffer就可以实现加速了?

#include 
#include 
#include 

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);

	const int NUM_BUFFER_ELEMENTS=16;
	cl_int hostBuffer[NUM_BUFFER_ELEMENTS] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
	//cannot be CL_MEM_READ_ONLY  ,the result is not correct!
	cl_mem DObj=clCreateBuffer(context,CL_MEM_READ_ONLY| CL_MEM_COPY_HOST_PTR,sizeof(int)*NUM_BUFFER_ELEMENTS,hostBuffer,&status);
	cl_int outputPtr[16] = {-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1, -1};
	for(int idx = 0; idx < 4; ++idx) {
		size_t buffer_origin[3] = {idx*2*sizeof(int), idx, 0};
		size_t host_origin[3] = {idx*2*sizeof(int), idx, 0};
		size_t region[3] = {2*sizeof(int), 2, 1};
		//here????????????????????has no kernel and so on but it can get correct results! 
		status = clEnqueueReadBufferRect(queue,DObj,CL_TRUE, buffer_origin, host_origin, region, 
			   0, // buffer_row_pitch
			   0, // buffer_slice_pitch
			   0, // host_row_pitch
			   0, // host_slice_pitch
			   outputPtr, 0, NULL, NULL);
	}
	for(int i = 0; i < 16; i++)
		printf("%d\n", outputPtr[i]);

	clReleaseCommandQueue(queue);
	status = clReleaseMemObject(DObj);
	clReleaseContext(context);
	return 0;
}
结果是对的 但下面问号部分我是按书上源代码  我是有疑问的:这种二维的  我知道buffer_origin和host_origin 是点对点传 第三维度是0 也就是只有二维 但region和拷贝回来那里我没怎么理解

OpenCL的学习_第8张图片

下个例子我补的是《OpenCL编程思想》的卷积:也是二维的例子 可以看成图像:

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);

	const char* filelist[]={"convolution.cl"};
	const int filenum=1;
	char* buffer[filenum];
	size_t sizes[filenum];
	loadProgramSource(filelist,filenum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filenum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

	const uint inputSignalWidth=8,inputSignalHeight=8,outputSignalWidth=6,outputSignalHeight=6,maskWidth=3,maskHeight=3;
	cl_uint inputsignal[inputSignalWidth][inputSignalHeight]={{3,1,1,4,8,2,1,3},{4,2,1,1,2,1,2,3},{4,4,4,4,3,2,2,2},{9,8,6,4,2,3,4,4},{1,1,6,4,0,0,0,0},{0,9,0,5,3,0,5,5},{8,6,4,3,3,3,1,1,},{5,6,0,0,0,0,6,2}};
	cl_uint mask[maskWidth][maskHeight]={{1,1,1},{1,0,1},{1,1,1}};

	cl_kernel kernel=clCreateKernel(program,"convolve",&status);
	cl_mem input_mem = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(int) *inputSignalWidth* inputSignalHeight,inputsignal, &status);
	cl_mem mask_mem =clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(int) *maskWidth* maskHeight, mask, &status);
	cl_mem output_mem =clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) *outputSignalWidth* outputSignalHeight, NULL, &status);
	status=clEnqueueWriteBuffer(queue,input_mem,CL_TRUE,0,sizeof(int) *inputSignalWidth* inputSignalHeight,inputsignal,0,NULL,NULL);
	status=clEnqueueWriteBuffer(queue,mask_mem,CL_TRUE,0,sizeof(int) *maskWidth* maskHeight,mask,0,NULL,NULL);
	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&input_mem);
	status=clSetKernelArg(kernel,1,sizeof(cl_mem),&mask_mem);
	status=clSetKernelArg(kernel,2,sizeof(cl_mem),&output_mem);
	status=clSetKernelArg(kernel,3,sizeof(cl_uint),&inputSignalWidth);
	status=clSetKernelArg(kernel,4,sizeof(cl_uint),&maskWidth);

	size_t global_item_size=outputSignalWidth* outputSignalHeight;
	size_t local_item_size=1;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);

	cl_uint outputsignal[outputSignalWidth][outputSignalHeight];
	status=clEnqueueReadBuffer(queue, output_mem, CL_TRUE, 0,sizeof(cl_uint) *outputSignalWidth* outputSignalHeight, outputsignal, 0, NULL, NULL);
	for(int y=0;y	clReleaseCommandQueue(queue);
	status = clReleaseMemObject(input_mem);
	status = clReleaseMemObject(mask_mem);
	status = clReleaseMemObject(output_mem);
	clReleaseKernel(kernel);
	clReleaseProgram(program);
	clReleaseContext(context);
	return 0;
}
结果是对的 上面的我也理解  但我不怎么理解的是它的kernel函数:

OpenCL的学习_第9张图片

__kernel void convolve(const __global uint* const input,__constant uint* const mask,__global uint* output,const int inputWidth,const int maskWidth){
	const int x=get_global_id(0);
	const int y=get_global_id(1);
	uint sum=0;
	for(int r=0;r
是不是0代表的是第一个形参的地址 1代表的是第二个形参 所以通过get_global_id是可以确定的谁是谁的 当有多个时?是这样理解吧。要不然x是谁的首地址 y是谁的怎么区分。我知道r*maskWidth+c是计算mask窗口的第几个数的下标 后面的我没看明白?

现在看到《OpenCL编程指南》第9章 上面这个核函数的问题我自己已明白 通过第8章的一个例子:高斯滤波  改动:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "FreeImage.h"
#include "gFreeImage.h"
cl_mem LoadImage(cl_context context, char *fileName, int &width, int &height)
{
    FREE_IMAGE_FORMAT format = FreeImage_GetFileType(fileName, 0);
    FIBITMAP* image = FreeImage_Load(format, fileName);
    // Convert to 32-bit image
    FIBITMAP* temp = image;
    image = FreeImage_ConvertTo32Bits(image);
    FreeImage_Unload(temp);
    width = FreeImage_GetWidth(image);
    height = FreeImage_GetHeight(image);
    char *buffer = new char[width * height * 4];
    memcpy(buffer, FreeImage_GetBits(image), width * height * 4);
    FreeImage_Unload(image);
    // Create OpenCL image
    cl_image_format clImageFormat;
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;
    cl_int errNum;
    cl_mem clImage;
    clImage = clCreateImage2D(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,&clImageFormat,width,height, 0,buffer,&errNum);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL image object" << std::endl;
        return 0;
    }
    return clImage;
}
size_t RoundUp(int groupSize, int globalSize)
{
    int r = globalSize % groupSize;
    if(r == 0)
    {
     	return globalSize;
    }
    else
    {
     	return globalSize + groupSize - r;
    }
}
bool SaveImage(char *fileName, char *buffer, int width, int height)
{
    FREE_IMAGE_FORMAT format = FreeImage_GetFIFFromFilename(fileName);
    FIBITMAP *image = FreeImage_ConvertFromRawBits((BYTE*)buffer, width,
                        height, width * 4, 32,
                        0xFF000000, 0x00FF0000, 0x0000FF00);
    return (FreeImage_Save(format, image, fileName) == TRUE) ? true : false;
}
int main(){
		cl_uint platformNum;
		cl_int status;
		status=clGetPlatformIDs(0,NULL,&platformNum);
		if(status!=CL_SUCCESS){
			printf("cannot get platforms number.\n");
			return -1;
		}
		cl_platform_id* platforms;
		platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformNum);
		status=clGetPlatformIDs(platformNum,platforms,NULL);
		if(status!=CL_SUCCESS){
			printf("cannot get platforms addresses.\n");
			return -1;
		}
		cl_platform_id platformInUse=platforms[0];
		cl_device_id device;
		clGetDeviceIDs(platformInUse,CL_DEVICE_TYPE_GPU,1,&device,NULL);
		cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
		cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE, &status);
		//Create Input Image Object
		char file[]={"sample_raw.png"};
		int imgwidth,imgheight;
		cl_mem image=LoadImage(context,file,imgwidth,imgheight);
		cl_image_format clImageFormat;
		//Create Output Image Object
		clImageFormat.image_channel_order = CL_RGBA;
		clImageFormat.image_channel_data_type = CL_UNORM_INT8;
		cl_mem outimg;
		outimg = clCreateImage2D(context, CL_MEM_WRITE_ONLY,&clImageFormat,imgwidth,imgheight, 0,NULL,&status);
		//Create Image Sampler
		cl_sampler sampler=clCreateSampler(context,CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE,CL_FILTER_NEAREST,&status);
		std::ifstream srcFile("ImageFilter2D.cl");
		std::string srcProg(std::istreambuf_iterator(srcFile),(std::istreambuf_iterator()));
		const char * src = srcProg.c_str();
		size_t length = srcProg.length();
		cl_program program=clCreateProgramWithSource(context,1,&src,&length,&status);
		status=clBuildProgram(program,1,&device,NULL,NULL,NULL);
		cl_kernel kernel=clCreateKernel(program,"gaussian_filter",NULL);
		status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &image);
		status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &outimg);
		status |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
		status |= clSetKernelArg(kernel, 3, sizeof(cl_int), &imgwidth);
		status |= clSetKernelArg(kernel, 4, sizeof(cl_int), &imgheight);
		size_t localWorkSize[2] = { 16, 16 };
		size_t globalWorkSize[2] =  { RoundUp(localWorkSize[0], imgwidth),RoundUp(localWorkSize[1], imgheight) };

		status=clEnqueueNDRangeKernel(queue,kernel,2, NULL,globalWorkSize, localWorkSize,0, NULL, NULL);
//		char *buffer = (char*)alloca[imgwidth * imgheight * 4]; //wrong !!!!
		char *buffer = (char*)alloca(imgwidth * imgheight * 4);
		size_t origin[3] = { 0, 0, 0 };
		size_t region[3] = { imgwidth, imgheight, 1};
		status = clEnqueueReadImage(queue, outimg, CL_TRUE,origin, region, 0, 0, buffer,0, NULL, NULL);
		char imgname[]={"filteredimg.png"};
		bool flag=SaveImage(imgname, buffer, imgwidth, imgheight);
		clReleaseCommandQueue(queue);
		clReleaseContext(context);
		clReleaseProgram(program);
		clReleaseKernel(kernel);
		clReleaseMemObject(image);
		clReleaseMemObject(outimg);
		clReleaseSampler(sampler);

		return 0;
}

它的kernel:

__kernel void gaussian_filter(__read_only image2d_t srcImg,__write_only image2d_t dstImg,sampler_t sampler,int width, int height)
{
    float kernelWeights[9] = { 1.0f, 2.0f, 1.0f,
                               2.0f, 4.0f, 2.0f,
                               1.0f, 2.0f, 1.0f };
    int2 startImageCoord = (int2) (get_global_id(0) - 1, get_global_id(1) - 1);
    int2 endImageCoord   = (int2) (get_global_id(0) + 1, get_global_id(1) + 1);
    int2 outImageCoord = (int2) (get_global_id(0), get_global_id(1));
    if (outImageCoord.x < width && outImageCoord.y < height)
    {
        int weight = 0;
        float4 outColor = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
        for( int y = startImageCoord.y; y <= endImageCoord.y; y++)
        {
            for( int x = startImageCoord.x; x <= endImageCoord.x; x++)
            {
                outColor += (read_imagef(srcImg, sampler, (int2)(x, y)) * (kernelWeights[weight] / 16.0f));
                weight += 1;
            }
        }
        // Write the output value to image
        write_imagef(dstImg, outImageCoord, outColor);
    }
}
其实就是这个意思: OpenCL的学习_第10张图片
所以之前没有想明白的问题 也就是之前那个卷积的kernel我也想明白了  还有我查了下 get_global_size(0)是什么意思了 原来是指每个工作组x方向上占多大即多少个workitems。这个高斯滤波奇怪之处在于我开始用一幅图处理结果竟然是个白纸 !有问题 但我换了一幅图就好了。即使直接用书上源码 不用我上面那个也是这样!奇怪!

看到《OpenCL编程指南》第9.5节 其实第9章我没怎么理解  因为没有什么实例供我学习。但看到这里  我知道我之前的那个event的工程为什么错了 首先源代码中的意思是向buffer中传入B参数时host创建了一个event 这个事件会回调一个异步函数 等这个event标志被host调为CL_COMPLETE后就继续执行写入B_buffer和执行kernel。它位置放错了set CL_COMPLETE位置放在后面了 所以那句写B等待一直读不到CL_COMPLETE所以一直卡在那里!还有一个就是我粗心写错的 就是SetKernel那里 我改过来了。

#include 
#include 
#include 
#include 
void loadProgramSource(const char** files, size_t length,char** buffer,size_t* sizes) {
	   /* Read each source file (*.cl) and store the contents into a temporary datastore */
	   for(size_t i=0; i < length; i++) {
	      FILE* file = fopen(files[i], "r");
	      if(file == NULL) {
	         perror("Couldn't read the program file");
	         exit(1);
	      }
	      fseek(file, 0, SEEK_END);
	      sizes[i] = ftell(file);
	      rewind(file); // reset the file pointer so that 'fread' reads from the front
	      buffer[i] = (char*)malloc(sizes[i]+1);
	      buffer[i][sizes[i]] = '\0';
	      fread(buffer[i], sizeof(char), sizes[i], file);
	      fclose(file);
	   }
}
void CL_CALLBACK postProcess(cl_event event, cl_int status, void *data) {
	printf("%s\n", (char*)data);
	for(int i=0;i<10;i++)
		printf("%d ",i);
	printf("\nevent call back has being done!\n");
}

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);
	const char* files[]={"sample_kernel.cl"};
	const int filesnum=1;
	char* buffer[filesnum];
	size_t sizes[filesnum];
	loadProgramSource(files,filesnum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filesnum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);
	int i, j;
	float *A = (float *)alloca(4*4*sizeof(float));
	float *B = (float *)alloca(4*4*sizeof(float));
	float *C = (float *)alloca(4*4*sizeof(float));
	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			A[i*4+j] = i*4+j+1;
			B[i*4+j] = j*4+i+1;
			printf("%7.2f,%7.2f  ", A[i*4+j],B[i*4+j]);
		}
		printf("\n");
	}
	cl_kernel kernel=clCreateKernel(program,"sample",&status);
	cl_mem a_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem b_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem c_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);

	/*
	 * Creating an user event
	 * As a user event is created, its execution status is set to be CL_SUBMITTED
	 * and we tag the event to a callback so when event reaches CL_COMPLETE, it will
	 * execute postProcess
	 */
	cl_event event1 = clCreateUserEvent(context, &status);
	char* eventfarg4="Looks like its done.";
	clSetEventCallback(event1, CL_COMPLETE, &postProcess, eventfarg4);
	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&a_buffer);
	status=clSetKernelArg(kernel,1,sizeof(cl_mem),&b_buffer);
	status=clSetKernelArg(kernel,2,sizeof(cl_mem),&c_buffer);
	status=clEnqueueWriteBuffer(queue,a_buffer,CL_TRUE,0,sizeof(float)*4*4,A,0,NULL,NULL);
	printf("have written a\n");
	//status=clEnqueueWriteBuffer(queue,b_buffer,CL_TRUE,0,sizeof(float)*4*4,B,0,NULL,NULL);
	clSetUserEventStatus(event1, CL_COMPLETE);
	status=clEnqueueWriteBuffer(queue,b_buffer,CL_TRUE,0,sizeof(float)*4*4,B,1,&event1,NULL);
	printf("have written b\n");
	size_t global_item_size = 4;
	size_t local_item_size = 1;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);
	status = clEnqueueReadBuffer(queue, c_buffer, CL_TRUE, 0, 4*4*sizeof(float), C, 0, NULL, NULL);

	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			printf("%7.2f ", C[i*4+j]);
		}
		printf("\n");
	}
	clReleaseCommandQueue(queue);
	clReleaseKernel(kernel);
	clReleaseProgram(program);
	clReleaseMemObject(a_buffer);
	clReleaseMemObject(b_buffer);
	clReleaseMemObject(c_buffer);
	clReleaseContext(context);
	clReleaseEvent(event1);
	return 0;
}
这下就解决了,结果如下:

OpenCL的学习_第11张图片
通过这个例子 我理解了host创建event 回调函数显示控制commandqueue中的命令顺序 !但第9章所说的跨不同context和queue的交互我没怎么懂、同步点那里也没怎么懂!没实例!

还有一个例子 就是之前我说clEnqueueReadBufferRect()中第7、8、9和10个参数我不懂的 看了书上后懂了意思,书上给了计算公式 套公式就行。这个例子是不进入kernel而是直接在buffer进行计算:

#include 
#include 
#include 
//?????????????????
int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);

	const int NUM_BUFFER_ELEMENTS=16;
	cl_int hostBuffer[NUM_BUFFER_ELEMENTS] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
	//cannot be CL_MEM_READ_ONLY  ,the result is not correct!
	cl_mem DObj=clCreateBuffer(context,CL_MEM_READ_ONLY| CL_MEM_COPY_HOST_PTR,sizeof(int)*NUM_BUFFER_ELEMENTS,hostBuffer,&status);
	cl_int outputPtr[16] = {-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1, -1};
	for(int idx = 0; idx < 4; ++idx) {
		size_t buffer_origin[3] = {idx*2*sizeof(int), idx, 0};
		size_t host_origin[3] = {idx*2*sizeof(int), idx, 0};
		size_t region[3] = {2*sizeof(int), 2, 1};
		//here ,has no kernel and so on!
		status = clEnqueueReadBufferRect(queue,DObj,CL_TRUE, buffer_origin, host_origin, region,
				0, // buffer_row_pitch
			   0, // buffer_slice_pitch
			   0, // host_row_pitch
			   0, // host_slice_pitch
			   outputPtr, 0, NULL, NULL);
	}
	for(int i = 0; i < 16; i++)
		printf("%d ", outputPtr[i]);
	printf("\n");

	int ptr[4]={-1,-1,-1,-1};
	size_t origin_buffer[3]={1*sizeof(int),1,0};
	size_t origin_host[3]={0,0,0};
	size_t regions[3]={2*sizeof(int),2,1};
	status = clEnqueueReadBufferRect(queue,DObj,CL_TRUE, origin_buffer, origin_host, regions,
					4*sizeof(int), // buffer_row_pitch
				   0, // buffer_slice_pitch
				   0, // host_row_pitch
				   2*sizeof(int), // host_slice_pitch
				   ptr, 0, NULL, NULL);
	for(int i = 0; i < 4; i++)
			printf("%d ", ptr[i]); //I can calculate "5" ,but why the sequence is 6 9 10?????????
		printf("\n");


	//do not use clEnqueueReadBuffer() or clEnqueueReadBufferRect() but clEnqueueMapBuffer() and clEnqueueUnmapMemObject()
	cl_int *mapptr=(cl_int*)clEnqueueMapBuffer(queue,DObj,CL_TRUE,CL_MAP_WRITE,0,sizeof(cl_int)*NUM_BUFFER_ELEMENTS,0,NULL,NULL,&status);
	for(uint i=0;i
结果:

OpenCL的学习_第12张图片

第一行和第三行的结果直接套公式就知道。但第二行的结果 我套公式只能算出5, 那个6 9 10怎么计算来的 我没懂????????

看到性能评估这一章:

#include 
#include 
#include 
#include 
void loadProgramSource(const char** files, size_t length,char** buffer,size_t* sizes);
void CL_CALLBACK eventCallBack(cl_event ev,cl_int event_status,void* user_data);

int main(){
	cl_uint platformsNum;
	cl_int status;
	status=clGetPlatformIDs(0,NULL,&platformsNum);
	cl_platform_id *platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformsNum);
	status=clGetPlatformIDs(platformsNum,platforms,NULL);
	cl_device_id device;
	clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,1,&device,NULL);
	cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
	cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,&status);
	const char* files[]={"sample_kernel.cl"};
	const int filesnum=1;
	char* buffer[filesnum];
	size_t sizes[filesnum];
	loadProgramSource(files,filesnum,buffer,sizes);
	cl_program program=clCreateProgramWithSource(context,filesnum,(const char**)buffer,sizes,&status);
	status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

	int i, j;
	float *A = (float *)alloca(4*4*sizeof(float));
	float *B = (float *)alloca(4*4*sizeof(float));
	float *C = (float *)alloca(4*4*sizeof(float));

	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			A[i*4+j] = i*4+j+1;
			B[i*4+j] = j*4+i+1;
			printf("%7.2f,%7.2f  ", A[i*4+j],B[i*4+j]);
		}
		printf("\n");
	}
	cl_kernel kernel=clCreateKernel(program,"sample",&status);
	cl_mem a_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem b_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);
	cl_mem c_buffer=clCreateBuffer(context,CL_MEM_READ_WRITE,sizeof(float)*4*4,NULL,&status);

	status=clSetKernelArg(kernel,0,sizeof(cl_mem),&a_buffer);
	status=clSetKernelArg(kernel,1,sizeof(cl_mem),&b_buffer);
	status=clSetKernelArg(kernel,2,sizeof(cl_mem),&c_buffer);
	status=clEnqueueWriteBuffer(queue,a_buffer,CL_TRUE,0,sizeof(float)*4*4,A,0,NULL,NULL);
	printf("have written a\n");
	status=clEnqueueWriteBuffer(queue,b_buffer,CL_TRUE,0,sizeof(float)*4*4,B,0,NULL,NULL);
	printf("have written b\n");
	size_t global_item_size = 4;
	size_t local_item_size = 1;

	cl_event usr_callback_event=clCreateUserEvent(context,&status);
	cl_event prof_event;
	status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_item_size, &local_item_size, 1, &usr_callback_event, &prof_event);
	int ID=0;
	clSetEventCallback(prof_event, CL_COMPLETE, &eventCallBack, (void*)ID);
	status=clSetUserEventStatus(usr_callback_event,CL_COMPLETE);

	status = clEnqueueReadBuffer(queue, c_buffer, CL_TRUE, 0, 4*4*sizeof(float), C, 0, NULL, NULL);
	for (i=0; i<4; i++) {
		for (j=0; j<4; j++) {
			printf("%7.2f ", C[i*4+j]);
		}
		printf("\n");
	}
	clReleaseCommandQueue(queue);
	clReleaseKernel(kernel);
	clReleaseProgram(program);
	clReleaseMemObject(a_buffer);
	clReleaseMemObject(b_buffer);
	clReleaseMemObject(c_buffer);
	clReleaseContext(context);
	clReleaseEvent(usr_callback_event);
	clReleaseEvent(prof_event);

	return 0;
}
结果:

OpenCL的学习_第13张图片

但有个问题:之前我写过一个event的工程 先试卡在事件那里 后来我把seteventstatus放在执行commandqueue前面 就可以了 但这个程序中是放在后面的 为什么不卡呢??

status=clSetUserEventStatus(usr_callback_event,CL_COMPLETE);
这句明明是在后面 为什么没有像我之前那样卡住  一直等待CL_COMPLETE  我的之前的放在后面就一直等待????

《OpenCL编程指南》我跨过了与3D渲染有关的:OpenCL、Direct3D的交互以及嵌入式。这些我暂时用不到。

《OpenCL编程指南》第二部分 案例研究

一、图像直方图计算

我开始自己写了个:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "FreeImage.h"
#include "gFreeImage.h"

cl_mem LoadImage(cl_context context, char *fileName, int &width, int &height)
{
    FREE_IMAGE_FORMAT format = FreeImage_GetFileType(fileName, 0);
    FIBITMAP* image = FreeImage_Load(format, fileName);
    // Convert to 32-bit image
    FIBITMAP* temp = image;
    image = FreeImage_ConvertTo32Bits(image);
    FreeImage_Unload(temp);
    width = FreeImage_GetWidth(image);
    height = FreeImage_GetHeight(image);
    char *buffer = new char[width * height * 4];
    memcpy(buffer, FreeImage_GetBits(image), width * height * 4);
    FreeImage_Unload(image);
    // Create OpenCL image
    cl_image_format clImageFormat;
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;
    cl_int errNum;
    cl_mem clImage;
    clImage = clCreateImage2D(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,&clImageFormat,width,height, 0,buffer,&errNum);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL image object" << std::endl;
        return 0;
    }
    delete [] buffer;
    return clImage;
}

int main(){
		cl_uint platformNum;
		cl_int status;
		status=clGetPlatformIDs(0,NULL,&platformNum);
		if(status!=CL_SUCCESS){
			printf("cannot get platforms number.\n");
			return -1;
		}
		cl_platform_id* platforms;
		platforms=(cl_platform_id*)alloca(sizeof(cl_platform_id)*platformNum);
		status=clGetPlatformIDs(platformNum,platforms,NULL);
		if(status!=CL_SUCCESS){
			printf("cannot get platforms addresses.\n");
			return -1;
		}
		cl_platform_id platformInUse=platforms[0];
		cl_device_id device;
		clGetDeviceIDs(platformInUse,CL_DEVICE_TYPE_GPU,1,&device,NULL);
		cl_context context=clCreateContext(NULL,1,&device,NULL,NULL,NULL);
		cl_command_queue queue=clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE, &status);

		//Create Input Image Object
		char file[]={"/home/jumper/OpenCL_projects/Book_ch14_Sample_histogram/lenna.jpg"};
		int imgwidth,imgheight;
		cl_mem image=LoadImage(context,file,imgwidth,imgheight);
		cl_sampler sampler=clCreateSampler(context,CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE,CL_FILTER_NEAREST,&status);
		cl_mem outmem=clCreateBuffer(context, CL_MEM_WRITE_ONLY,sizeof(int)*256*3,NULL,NULL);

		std::ifstream srcFile("/home/jumper/OpenCL_projects/Book_ch14_Sample_histogram/histogramcl.cl");
		std::string srcProg(std::istreambuf_iterator(srcFile),(std::istreambuf_iterator()));
		const char * src = srcProg.c_str();
		size_t length = srcProg.length();
		cl_program program=clCreateProgramWithSource(context,1,&src,&length,&status);
		status=clBuildProgram(program,1,&device,NULL,NULL,NULL);

		cl_kernel kernel=clCreateKernel(program,"calculateHistogram",NULL);
		status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &image);
		status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &outmem);
		status |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
		status |= clSetKernelArg(kernel, 3, sizeof(cl_int), &imgwidth);
		status |= clSetKernelArg(kernel, 4, sizeof(cl_int), &imgheight);

		size_t localWorkSize[2] = { 16, 16 };
		size_t globalWorkSize[2] =  {imgwidth,imgheight};
		clEnqueueNDRangeKernel(queue,kernel,2, NULL,globalWorkSize, localWorkSize,0, NULL, NULL);

		int* outHistogram=(int*)alloca(sizeof(int)*256*3);
		status=clEnqueueReadBuffer(queue,outmem,CL_TRUE,0,sizeof(int)*256*3,outHistogram,0,NULL,NULL);

		int j=0;
		for(int ind=0;ind<=(255*3);ind=ind+3){
			printf("R:%d  G:%d  B:%d",outHistogram[ind],outHistogram[ind+1],outHistogram[ind+2]);
			printf("    %d\n",j);
			j=j+1;
		}

		clReleaseKernel(kernel);
		clReleaseProgram(program);
		clReleaseCommandQueue(queue);
		clReleaseMemObject(image);
		clReleaseMemObject(outmem);
		clReleaseContext(context);

		return 0;

}

其中我的kernel是:

__kernel void calculateHistogram(__read_only image2d_t srcimg,__global const int *outmatrix,sample_t sampler,__global const int width,__global const int height){
	int2 srcposition=(int2)(get_global_id(0),get_global_id(1));
	if (srcposition.x < width && srcposition.y < height)
    {
        int4 positionValue = (int4)(0, 0, 0, 0);
        positionValue = read_imagef(srcImg, sampler, (int2)(x, y)) ;
        int RValue=position.x;
        int GValue=position.y;
        int BValue=position.z;
        outmatrix[RValue*2+RValue]=outmatrix[RValue*2+RValue]+1;
        outmatrix[GValue*3+GValue]=outmatrix[GValue*3+GValue]+1;
        outmatrix[BValue*4+BValue]=outmatrix[BValue*4+BValue]+1;
        
    }
           
}

但结果出来不对  又出现这种无意义的数:

OpenCL的学习_第14张图片

对于这种无意义的数  应该是和前几次我出现无意义的数一样的问题  只是我没找到而已 ???????

还有我看了博客http://www.cnblogs.com/mikewolf2002/archive/2012/10/22/2734462.html  大神的计算直方图  出来好奇怪:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "gclFile.h"
#include "gFreeImage.h"

using namespace std;

//#pragma comment (lib,"OpenCL.lib")
//#pragma comment(lib,"freeimage.lib")

cl_int binSize;            //bins�Ĵ�С�����ڻҶ�ͼ��һ��Ϊ256
cl_int groupSize;       //workgroup��С
cl_int subHistgCnt;   //��ͼ��ֿ�����ֱ��ͼ������ٺϲ�������ͼ���ֱ��ͼ
cl_uint *data;            //ͼ������
cl_int width;              //ͼ����
cl_int height;            //ͼ��߶�
cl_uint *hostBin;       //cpu����õ�������ֱ��ͼ���
cl_uint *midDeviceBin;      //gpu�����ӿ��ֱ��ͼ�����Ҳ��kernel����Ľ�����ϲ���deviceBin�С�
cl_uint *deviceBin;         //�豸(gpu)���������ս��

cl_mem dataBuf;                 //ͼ��device memory
cl_mem midDeviceBinBuf;         //�ӿ�ֱ��ͼ���device memory���������������һ��������kernel������

//cpu��ֱ��ͼ
void cpu_histgo()
	{
	int i, j;
	for(i = 0; i < height; ++i)
		{
		for(j = 0; j < width; ++j)
			{
			//printf("data: %d\n", data[i * width + j] );
			hostBin[data[i * width + j]]++;
			//printf("hostbin %d=%d\n", data[i * width + j], hostBin[data[i * width + j]]);
			}
		}
	}

int waitForEventAndRelease(cl_event *event)
	{
	cl_int status = CL_SUCCESS;
	cl_int eventStatus = CL_QUEUED;
	while(eventStatus != CL_COMPLETE)
		{
		status = clGetEventInfo(
			*event, 
			CL_EVENT_COMMAND_EXECUTION_STATUS, 
			sizeof(cl_int),
			&eventStatus,
			NULL);
		}

	status = clReleaseEvent(*event);

	return 0;
	}

int main0(int argc, char* argv[])
{
	unsigned char *src_image=0;
	gFreeImage img;
	if(!img.LoadImageGrey("/home/jumper/OpenCL_projects/Book_ch14_Sample_histogram/sample_raw.png"))
		{
		printf("can not load lenna.jpg\n");
		exit(0);
		}
	src_image = img.getImageDataGrey(width,height);

	binSize = 256;
	groupSize = 128;
	subHistgCnt = (width *height)/(binSize * groupSize);

	//width��binSize����������height��groupsize��������
	width = (width / binSize ? width / binSize: 1) * binSize;
	height = (height / groupSize ? height / groupSize: 1) * groupSize;

	// ����ͼ������
	data = (cl_uint*)malloc(width * height * sizeof(cl_uint));
	if(!data)
		{
		printf("malloc error\n");
			return 0;
		}
	memset(data, 0,width * height * sizeof(cl_uint));
	 
	int i, j;
	//��ÿ������ֵ����һ��float���飬��Ҫ�Ǽ��㷽�㣬Ҳ������kernel��ֱ����uchar
	for(i = 0; i < width * height; i++)
		{
		data[i] =  (cl_uint)src_image[i]; 
		//printf("%d\n", data[i]);
		//printf("src= %d\n", src_image[i]);
		}

	hostBin = (cl_uint*)malloc(binSize * sizeof(cl_uint));
	if(!hostBin)
		{
		printf("malloc error\n");
			return 0;
		}

	memset(hostBin, 0, binSize * sizeof(cl_uint));

	midDeviceBin = (cl_uint*)malloc(binSize * subHistgCnt * sizeof(cl_uint));
	if(!midDeviceBin)
		{
		printf("malloc error\n");
			return 0;
		}

	memset(midDeviceBin, 0, binSize * subHistgCnt * sizeof(cl_uint));

	deviceBin = (cl_uint*)malloc(binSize * sizeof(cl_uint));
	if(!deviceBin)
		{
		printf("malloc error\n");
			return 0;
		}

	memset(deviceBin, 0, binSize * sizeof(cl_uint));

	//����driver dump il��isa�ļ�
	//_putenv("GPU_DUMP_DEVICE_KERNEL=3");

	cl_uint status;
	cl_platform_id platform;

	//����ƽ̨����
	//status = clGetPlatformIDs( 1, &platform, NULL );
	cl_uint numPlatforms;
	std::string platformVendor; 
	status = clGetPlatformIDs(0, NULL, &numPlatforms);
	if(status != CL_SUCCESS)
		{
		return 0;
		}
	if (0 < numPlatforms) 
		{
		cl_platform_id* platforms = new cl_platform_id[numPlatforms];
		status = clGetPlatformIDs(numPlatforms, platforms, NULL);

		char platformName[100];
		for (unsigned i = 0; i < numPlatforms; ++i) 
			{
			status = clGetPlatformInfo(platforms[i],
				CL_PLATFORM_VENDOR,
				sizeof(platformName),
				platformName,
				NULL);

			platform = platforms[i];
			platformVendor.assign(platformName);

			if (!strcmp(platformName, "Advanced Micro Devices, Inc.")) 
				{
				break;
				}
			}

		std::cout << "Platform found : " << platformName << "\n";
		delete[] platforms;
		}
	cl_device_id device;

	//����GPU�豸
	clGetDeviceIDs( platform, CL_DEVICE_TYPE_GPU,
		1,
		&device,
		NULL);
	//����context
	cl_context context = clCreateContext( NULL,
		1,
		&device,
		NULL, NULL, NULL);
	//�����������
	cl_command_queue queue = clCreateCommandQueue( context,
		device,
		CL_QUEUE_PROFILING_ENABLE, NULL );

	//����2��OpenCL�ڴ����
	dataBuf = clCreateBuffer(
		context, 
		CL_MEM_READ_ONLY,
		sizeof(cl_uint) * width  * height,
		NULL, 
		0);

	midDeviceBinBuf = clCreateBuffer(
		context, 
		CL_MEM_WRITE_ONLY,
		sizeof(cl_uint) * binSize * subHistgCnt,
		NULL, 
		0);

	//��ͼ������д��device memory��
	cl_event writeEvt;
	status = clEnqueueWriteBuffer(queue,
		dataBuf,
		CL_FALSE,
		0,
		width * height * sizeof(cl_uint),
		data,
		0,
		NULL,
		&writeEvt);

	status = clFlush(queue);
	waitForEventAndRelease(&writeEvt);

	//kernel�ļ�Ϊhisto.cl
	gclFile kernelFile;
	if(!kernelFile.open("/home/jumper/OpenCL_projects/Book_ch14_Sample_histogram/src/blog_histo.cl"))
		{
		printf("Failed to load kernel file \n");
		exit(0);
		}
	const char * source = kernelFile.source().c_str();
	size_t sourceSize[] = {strlen(source)};
	//�����������
	cl_program program = clCreateProgramWithSource(context, 1, &source,sourceSize,NULL);
	//����������
	status = clBuildProgram( program, 1, &device, NULL, NULL, NULL );
	if(status != 0)
		{
		printf("clBuild failed:%d\n", status);
		char tbuf[0x10000];
		clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0x10000, tbuf, NULL);
		printf("\n%s\n", tbuf);
		return -1;
		}

	//����Kernel����
	cl_kernel kernel = clCreateKernel( program, "histogram256", NULL );
	//����Kernel����
	cl_mem pos=clCreateBuffer( context,CL_MEM_WRITE_ONLY,groupSize * binSize * sizeof(cl_uchar),NULL,0);
	status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&dataBuf); 
	status = clSetKernelArg(kernel, 1, groupSize * binSize * sizeof(cl_uchar), NULL); //local memroy size, lds for amd
	status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&midDeviceBinBuf); 

	cl_event ev;
	size_t globalThreads;
	size_t localThreads ;

	globalThreads = (width * height) / binSize ;
	localThreads = groupSize;
	printf("global_work_size =%d, local_work_size=%d\n", globalThreads, localThreads);

	clEnqueueNDRangeKernel( queue,kernel,1,NULL,&globalThreads,&localThreads, 0, NULL, &ev);
	clFlush( queue );
	waitForEventAndRelease(&ev);

//	cl_ulong startTime, endTime;
//	clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &startTime, NULL); //error accured when run this code sentence!???????
//	clGetEventProfilingInfo(ev,  CL_PROFILING_COMMAND_END,sizeof(cl_ulong), &endTime, NULL);
//	cl_ulong kernelExecTimeNs = endTime-startTime;
//	printf("kernal exec time :%8.6f ms\n ", kernelExecTimeNs*1e-6 );

	cl_event readEvt;
	status = clEnqueueReadBuffer(queue, midDeviceBinBuf, CL_FALSE,0,subHistgCnt * binSize * sizeof(cl_uint),midDeviceBin,0,NULL,&readEvt);
	clWaitForEvents(1, &readEvt);

	for(i = 0; i < subHistgCnt; ++i)
	{
		for( j = 0; j < binSize; ++j)
			{
			deviceBin[j] += midDeviceBin[i * binSize + j];
			}
	}
	cpu_histgo();

	bool result = true;
	for(i = 0; i < binSize; ++i)
	{
		printf("host%d=%d  device%d=%d\n",i,hostBin[i], i, deviceBin[i]);
//		if(hostBin[i] != deviceBin[i])
//			{
//			printf("host%d:%d, device%d:%d\n",i, hostBin[i], i, deviceBin[i]);
//			result = false;
//			break;
//			}
	}

	if(result)
	{
		printf("passed\n");
	}
	else
	{
		printf("failed\n");
	}

	free(data);
	free(hostBin);
	free(midDeviceBin);
	free(deviceBin);
	//ɾ��OpenCL��Դ����
	clReleaseProgram(program);
	clReleaseCommandQueue(queue);
	clReleaseContext(context);
	return 0;
}
他的kernel:

#define LINEAR_MEM_ACCESS
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable 

#define BIN_SIZE 256

__kernel void histogram256(__global const uint* data,__local uchar* sharedArray,__global uint* binResult)
{
    size_t localId = get_local_id(0);
    size_t globalId = get_global_id(0);
    size_t groupId = get_group_id(0);
    size_t groupSize = get_local_size(0);

    for(int i = 0; i < BIN_SIZE; ++i)
        sharedArray[localId * BIN_SIZE + i] = 0;

    barrier(CLK_LOCAL_MEM_FENCE);
    
    for(int i = 0; i < BIN_SIZE; ++i)
    {
#ifdef LINEAR_MEM_ACCESS
        uint value = data[groupId * groupSize * BIN_SIZE + i * groupSize + localId];
#else
        uint value = data[globalId * BIN_SIZE + i];
#endif // LINEAR_MEM_ACCESS
        sharedArray[localId * BIN_SIZE + value]++;
    }
    
    barrier(CLK_LOCAL_MEM_FENCE); 
    
    for(int i = 0; i < BIN_SIZE / groupSize; ++i)
    {
        uint binCount = 0;
        for(int j = 0; j < groupSize; ++j)
            binCount += sharedArray[j * BIN_SIZE + i * groupSize + localId];
            
        binResult[groupId * BIN_SIZE + i * groupSize + localId] = binCount;
    }
}
出来的结果是:

OpenCL的学习_第15张图片OpenCL的学习_第16张图片OpenCL的学习_第17张图片OpenCL的学习_第18张图片

看一会儿正确一会儿不正确!???!!!不管是用终端还是用eclipse 我没改动过 同样的工程和图片   我和同事看了下发现第二个参数他传的NULL进来,同事说可能这里的问题导致的?:

status = clSetKernelArg(kernel, 1, groupSize * binSize * sizeof(cl_uchar), NULL);
这里传了NULL 而kernel里对第2个参数进行了寻址  所以导致了上面忽对忽错的结果????


发现 https://chenxiaowei.gitbooks.io/heterogeneous-computing-with-opencl2-0/content/content/chapter1/1.1-chinese.html   介绍同步、事件机制很好  比之前懂一些了。

你可能感兴趣的:(OpenCL)