使用Spark DataFrame针对数据进行SQL处理

简介

    DataFrame让Spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,计算性能更还快了两倍。这一个小小的API,隐含着Spark希望大一统「大数据江湖」的野心和决心。DataFrame像是一条联结所有主流数据源并自动转化为可并行处理格式的水渠,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。

例子说明

    提供了将结构化数据为DataFrame并注册为表,使用SQL查询的例子

    提供了从RMDB中读取数据为DataFrame的例子

    提供了将数据写入到RMDB中的例子

代码样例

import scala.collection.mutable.ArrayBuffer
import scala.io.Source
import java.io.PrintWriter
import util.control.Breaks._
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import java.sql.DriverManager
import java.sql.PreparedStatement
import java.sql.Connection
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
import java.util.Properties
import org.apache.spark.sql.SaveMode

object SimpleDemo extends App {
  val sc = new SparkContext("local[*]", "test")
  val sqlc = new SQLContext(sc)
  val driverUrl = "jdbc:mysql://ip:3306/ding?user=root&password=root&zeroDateTimeBehavior=convertToNull&characterEncoding=utf-8"
  val tableName = "tbaclusterresult"

  //把数据转化为DataFrame,并注册为一个表
  val df = sqlc.read.json("G:/data/json.txt")
  df.registerTempTable("user")
  val res = sqlc.sql("select * from user")
  println(res.count() + "---------------------------")
  res.collect().map { row =>
    {
      println(row.toString())
    }
  }

  //从MYSQL读取数据
  val jdbcDF = sqlc.read
    .options(Map("url" -> driverUrl,
      //      "user" -> "root",
      //      "password" -> "root",
      "dbtable" -> tableName))
    .format("jdbc")
    .load()
  println(jdbcDF.count() + "---------------------------")
  jdbcDF.collect().map { row =>
    {
      println(row.toString())
    }
  }

  //插入数据至MYSQL
  val schema = StructType(
    StructField("name", StringType) ::
      StructField("age", IntegerType)
      :: Nil)

  val data1 = sc.parallelize(List(("blog1", 301), ("iteblog", 29),
    ("com", 40), ("bt", 33), ("www", 23))).
    map(item => Row.apply(item._1, item._2))
  import sqlc.implicits._
  val df1 = sqlc.createDataFrame(data1, schema)
  //  df1.write.jdbc(driverUrl, "sparktomysql", new Properties)
  df1.write.mode(SaveMode.Overwrite).jdbc(driverUrl, "testtable", new Properties)

  //DataFrame类中还有insertIntoJDBC方法,调用该函数必须保证表事先存在,它只用于插入数据,函数原型如下:
  //def insertIntoJDBC(url: String, table: String, overwrite: Boolean): Unit

  //插入数据到MYSQL
  val data = sc.parallelize(List(("www", 10), ("iteblog", 20), ("com", 30)))
  data.foreachPartition(myFun)

  case class Blog(name: String, count: Int)

  def myFun(iterator: Iterator[(String, Int)]): Unit = {
    var conn: Connection = null
    var ps: PreparedStatement = null
    val sql = "insert into blog(name, count) values (?, ?)"
    try {
      conn = DriverManager.getConnection(driverUrl, "root", "root")
      iterator.foreach(data => {
        ps = conn.prepareStatement(sql)
        ps.setString(1, data._1)
        ps.setInt(2, data._2)
        ps.executeUpdate()
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      if (ps != null) {
        ps.close()
      }
      if (conn != null) {
        conn.close()
      }
    }
  }
}

将数据写入ORACLE示例

val driverUrl: String = "jdbc:oracle:thin:@IP:1521/sda"
    jdbcDF.foreachPartition(insertDataFunc)
    def insertDataFunc(iterator: Iterator[Row]): Unit = {
      var conn: Connection = null
      var psmt: PreparedStatement = null
      val sql = "INSERT INTO TEST2(ID,NAME,NUM) VALUES ( ?,?, ?)"
      var i = 0
      var num = 0
      try {
        conn = DriverManager.getConnection(driverUrl, "user", "password")
        conn.setAutoCommit(false);
        psmt = conn.prepareStatement(sql)
        iterator.foreach { row =>
          {
            i += 1
            if (i > batchSize) {
              i = 0
              psmt.executeBatch();
              num += psmt.getUpdateCount();
              psmt.clearBatch();
            }
            psmt.setObject(1, row(0))
            psmt.setObject(2, row(1))
            psmt.setObject(3, row(2))
            psmt.addBatch();
          }
        }
        psmt.executeBatch();
        num += psmt.getUpdateCount();
        conn.commit();
        println(num+"..........................")
      } catch {
        case e: Exception => {
          e.printStackTrace()
          try {
            conn.rollback();
          } catch {
            case e: Exception => e.printStackTrace();
          }
        }
      } finally {
        if (psmt != null) {
          psmt.close()
        }
        if (conn != null) {
          conn.close()
        }
      }
    }

你可能感兴趣的:(使用Spark DataFrame针对数据进行SQL处理)