张正友相机标定实例

张正友相机标定实例

 

相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。

相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上)。

相机标定的输出:摄像机的内参、外参系数
 

流程

1. 准备标定图片

2. 对每一张标定图片,提取角点信息

3. 对每一张标定图片,进一步提取亚像素角点信息

4. 在棋盘标定图上绘制找到的内角点(非必须,仅为了显示)

5. 相机标定

6. 对标定结果进行评价

7. 查看标定效果——利用标定结果对棋盘图进行矫正

 

 

标定图片需要使用标定板在不同位置、不同角度、不同姿态下拍摄,最少需要3张,以10~20张为宜。标定板需要是黑白相间的矩形构成的棋盘图,制作精度要求较高,如下图所示:

张正友相机标定实例_第1张图片

 

 

 

 

在张氏标定法中,用于标定的棋盘格是三维场景中的一个平面II,其在成像平面的像是另一个平面π,知道了两个平面的对应点的坐标,就可以求解得到两个平面的单应矩阵H。其中,标定的棋盘格是特制的,其角点的坐标是已知的;图像中的角点,可以通过角点提取算法得到,这样就可以得到棋盘平面II和图像平面π的单应矩阵H。
通过上面的相机模型有:

                                                              

 

其中p是像点坐标,P是标定的棋盘坐标。 这样就可以得到下面的等式:

                                                                             

H表示的是成像平面和标定棋盘平面之间的单应矩阵。通过对应的点对解得H后,则可以通过上面的等式得到相机的内参数K,以及外参旋转矩阵R和平移向量t。

棋盘平面和成像平面间的单应

将一个平面映射到另一个平面,将棋盘格所在的平面映射到相机的成像平面,则有

 

                                                                  

p为棋盘格所成像的像点坐标,P棋盘格角点在世界坐标系的坐标。

设棋盘格所在的平面为世界坐标系中Z=0的平面,这样棋盘格的任一角点P的世界坐标为(X,Y,0),根据小孔相机模型:

   张正友相机标定实例_第2张图片

根据平面间的单应性,有

                                                                张正友相机标定实例_第3张图片

将上面两个等式进行整合,则可以得到单应矩阵H和相机矩阵(包含内参和外参)的相等,如下:

                                                               

这样就可以使用棋盘平面和成像平面间的单应矩阵来约束相机的内参和外参。单应矩阵H可以通过棋盘平和成像平面上对应的点计算出来。

内参的约束条件

通过平面间的单应,可以得到如下的等式

                           

将旋转矩阵R的各个列向量和平移向量t使用H的列向量表示,

                                                  张正友相机标定实例_第4张图片

又由于,R是旋转矩阵,则其是正交矩阵,也就是其任意两个列向量的内积为0,列向量的模为1。故有:

 

                                                


则对于一幅棋盘标定版的图像(一个单应矩阵)可以获得两个对内参数的约束等式:

                              

求解内参数

通过一幅标定板的图像可以的得到关于内参数的两个等式,令

 

                    张正友相机标定实例_第5张图片

注意,矩阵B是一个对称矩阵,其未知量只有6个,将6个未知量写为向量的形式

                                        


令hi为单应矩阵H的第i个行向量,则有

                                                              


故:

   张正友相机标定实例_第6张图片

有了上边的等式,再来看从一幅标定板图像得到的等式

 

 

        

写成矩阵的形式有:

 

                                              张正友相机标定实例_第7张图片


上面的一幅标定板图像取得的约束等式,假如有n幅图像,则

                       


其中,V是一个2n×6的矩阵,b是一个6维向量,所以

  • 当n≥3,可以得到b的唯一解;
  • 当n=2,则可以假设扭曲参数γ=0作为额外的约束条件
  • 当n=1,则值能计算两个相机的内参数

对于方程Vb=0可以使用SVD求得其最小二乘解。对VTV进行SVD分解,其最小特征值对应的特征向量就是Vb=0的最小二乘解,从而求得矩阵B。由于这里得到的B的估计值是在相差一个常量因子下得到的,所以有:

 

                                                             


从而可以得到相机的各个内参数:

                      张正友相机标定实例_第8张图片

最大似然估计

上面使用最小二乘法得到估计得到的解,并没有物理上的实际意义,。为了进一步增加标定结果的可靠性,可以使用最大似然估计(Maximum likelihood estimation)来优化上面估计得到的结果。

假设同一相机从n个不同的角度的得到了n幅标定板的图像,每幅图像上有m个像点。Mij表示第i幅图像上第j个像点对应的标定板上的三维点,则

 

   


m^(K,Ri,ti,Mij)表示Mij的像点。其中,Ri,ti表示第i幅图像对应相机的旋转矩阵和平移向量,K是相机的内参数。则像点mij的概率密度函数是

   


构造似然函数

   张正友相机标定实例_第9张图片


为了能够让L取得最大值,需要最小化下面的值

  


这是一个非线性优化问题,可以使用Levenberg-Marquardt的方法,利用上面得到的解作为初始值,迭代得到最优解。

 

 

demo

 

张正友相机标定实例_第10张图片

 

图像是使用huawei mate9拍摄。

 

结果:

张正友相机标定实例_第11张图片

 

 

代码:

main.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import cv2 as cv
import numpy as np
import os
from step.homography import get_homography
from step.intrinsics import get_intrinsics_param
from step.extrinsics import get_extrinsics_param
from step.distortion import get_distortion
from step.refine_all import refinall_all_param


def calibrate():
    #求单应矩阵
    H = get_homography(pic_points, real_points_x_y)

    #求内参
    intrinsics_param = get_intrinsics_param(H)

    #求对应每幅图外参
    extrinsics_param = get_extrinsics_param(H, intrinsics_param)

    #畸变矫正
    k = get_distortion(intrinsics_param, extrinsics_param, pic_points, real_points_x_y)

    #微调所有参数
    [new_intrinsics_param, new_k, new_extrinsics_param]  = refinall_all_param(intrinsics_param,
                                                            k, extrinsics_param, real_points, pic_points)

    print("intrinsics_parm:\t", new_intrinsics_param)
    print("distortionk:\t", new_k)
    print("extrinsics_parm:\t", new_extrinsics_param)


if __name__ == "__main__":
    file_dir = r'..\pic'
    # 标定所用图像
    pic_name = os.listdir(file_dir)

    # 由于棋盘为二维平面,设定世界坐标系在棋盘上,一个单位代表一个棋盘宽度,产生世界坐标系三维坐标
    cross_corners = [9, 6] #棋盘方块交界点排列
    real_coor = np.zeros((cross_corners[0] * cross_corners[1], 3), np.float32)
    real_coor[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)

    real_points = []
    real_points_x_y = []
    pic_points = []

    for pic in pic_name:
        pic_path = os.path.join(file_dir, pic)
        pic_data = cv.imread(pic_path)

        # 寻找到棋盘角点
        succ, pic_coor = cv.findChessboardCorners(pic_data, (cross_corners[0], cross_corners[1]), None)

        if succ:
            # 添加每幅图的对应3D-2D坐标
            pic_coor = pic_coor.reshape(-1, 2)
            pic_points.append(pic_coor)

            real_points.append(real_coor)
            real_points_x_y.append(real_coor[:, :2])
    calibrate()

distortion.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import numpy as np

#返回畸变矫正系数k0,k1
def get_distortion(intrinsic_param, extrinsic_param, pic_coor, real_coor):
    D = []
    d = []
    for i in range(len(pic_coor)):
        for j in range(len(pic_coor[i])):
            #转换为齐次坐标
            single_coor = np.array([(real_coor[i])[j, 0], (real_coor[i])[j, 1], 0, 1])

            #利用现有内参及外参求出估计图像坐标
            u = np.dot(np.dot(intrinsic_param, extrinsic_param[i]), single_coor)
            [u_estim, v_estim] = [u[0]/u[2], u[1]/u[2]]

            coor_norm = np.dot(extrinsic_param[i], single_coor)
            coor_norm /= coor_norm[-1]

            #r = np.linalg.norm((real_coor[i])[j])
            r = np.linalg.norm(coor_norm)


            D.append(np.array([(u_estim - intrinsic_param[0, 2]) * r ** 2, (u_estim - intrinsic_param[0, 2]) * r ** 4]))
            D.append(np.array([(v_estim - intrinsic_param[1, 2]) * r ** 2, (v_estim - intrinsic_param[1, 2]) * r ** 4]))

            #求出估计坐标与真实坐标的残差
            d.append(pic_coor[i][j, 0] - u_estim)
            d.append(pic_coor[i][j, 1] - v_estim)
            '''
            
            D.append(np.array([(pic_coor[i][j, 0] - intrinsic_param[0, 2]) * r ** 2, (pic_coor[i][j, 0] - intrinsic_param[0, 2]) * r ** 4]))
            D.append(np.array([(pic_coor[i][j, 1] - intrinsic_param[1, 2]) * r ** 2, (pic_coor[i][j, 1] - intrinsic_param[1, 2]) * r ** 4]))

            #求出估计坐标与真实坐标的残差
            d.append(u_estim - pic_coor[i][j, 0])
            d.append(v_estim - pic_coor[i][j, 1])
            '''

    D = np.array(D)
    temp = np.dot(np.linalg.inv(np.dot(D.T, D)), D.T)
    k = np.dot(temp, d)
    '''
    #也可利用SVD求解D * k = d中的k
    U, S, Vh=np.linalg.svd(D, full_matrices=False)
    temp_S = np.array([[S[0], 0],
                       [0, S[1]]])
    temp_res = np.dot(Vh.transpose(), np.linalg.inv(temp_S))
    temp_res_res = np.dot(temp_res, U.transpose())
    k = np.dot(temp_res_res, d)
    '''
    return k

extrinsics.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import numpy as np

#返回每一幅图的外参矩阵[R|t]
def get_extrinsics_param(H, intrinsics_param):
    extrinsics_param = []

    inv_intrinsics_param = np.linalg.inv(intrinsics_param)
    for i in range(len(H)):
        h0 = (H[i].reshape(3, 3))[:, 0]
        h1 = (H[i].reshape(3, 3))[:, 1]
        h2 = (H[i].reshape(3, 3))[:, 2]

        scale_factor = 1 / np.linalg.norm(np.dot(inv_intrinsics_param, h0))

        r0 = scale_factor * np.dot(inv_intrinsics_param, h0)
        r1 = scale_factor * np.dot(inv_intrinsics_param, h1)
        t = scale_factor * np.dot(inv_intrinsics_param, h2)
        r2 = np.cross(r0, r1)

        R = np.array([r0, r1, r2, t]).transpose()
        extrinsics_param.append(R)

    return extrinsics_param

homography.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import numpy as np
from scipy import optimize as opt


#求输入数据的归一化矩阵
def normalizing_input_data(coor_data):
    x_avg = np.mean(coor_data[:, 0])
    y_avg = np.mean(coor_data[:, 1])
    sx = np.sqrt(2) / np.std(coor_data[:, 0])
    sy = np.sqrt(2) / np.std(coor_data[:, 1])

    norm_matrix = np.matrix([[sx, 0, -sx * x_avg],
                             [0, sy, -sy * y_avg],
                             [0, 0, 1]])
    return norm_matrix


#求取初始估计的单应矩阵
def get_initial_H(pic_coor, real_coor):
    # 获得归一化矩阵
    pic_norm_mat = normalizing_input_data(pic_coor)
    real_norm_mat = normalizing_input_data(real_coor)

    M = []
    for i in range(len(pic_coor)):
        #转换为齐次坐标
        single_pic_coor = np.array([pic_coor[i][0], pic_coor[i][1], 1])
        single_real_coor = np.array([real_coor[i][0], real_coor[i][1], 1])

        #坐标归一化
        pic_norm = np.dot(pic_norm_mat, single_pic_coor)
        real_norm = np.dot(real_norm_mat, single_real_coor)

        #构造M矩阵
        M.append(np.array([-real_norm.item(0), -real_norm.item(1), -1,
                      0, 0, 0,
                      pic_norm.item(0) * real_norm.item(0), pic_norm.item(0) * real_norm.item(1), pic_norm.item(0)]))

        M.append(np.array([0, 0, 0,
                      -real_norm.item(0), -real_norm.item(1), -1,
                      pic_norm.item(1) * real_norm.item(0), pic_norm.item(1) * real_norm.item(1), pic_norm.item(1)]))

    #利用SVD求解M * h = 0中h的解
    U, S, VT = np.linalg.svd((np.array(M, dtype='float')).reshape((-1, 9)))
    # 最小的奇异值对应的奇异向量,S求出来按大小排列的,最后的最小
    H = VT[-1].reshape((3, 3))
    H = np.dot(np.dot(np.linalg.inv(pic_norm_mat), H), real_norm_mat)
    H /= H[-1, -1]

    return H


#返回估计坐标与真实坐标偏差
def value(H, pic_coor, real_coor):
    Y = np.array([])
    for i in range(len(real_coor)):
        single_real_coor = np.array([real_coor[i, 0], real_coor[i, 1], 1])
        U = np.dot(H.reshape(3, 3), single_real_coor)
        U /= U[-1]
        Y = np.append(Y, U[:2])

    Y_NEW = (pic_coor.reshape(-1) - Y)

    return Y_NEW


#返回对应jacobian矩阵
def jacobian(H, pic_coor, real_coor):
    J = []
    for i in range(len(real_coor)):
        sx = H[0]*real_coor[i][0] + H[1]*real_coor[i][1] +H[2]
        sy = H[3]*real_coor[i][0] + H[4]*real_coor[i][1] +H[5]
        w = H[6]*real_coor[i][0] + H[7]*real_coor[i][1] +H[8]
        w2 = w * w

        J.append(np.array([real_coor[i][0]/w, real_coor[i][1]/w, 1/w,
                           0, 0, 0,
                           -sx*real_coor[i][0]/w2, -sx*real_coor[i][1]/w2, -sx/w2]))

        J.append(np.array([0, 0, 0,
                           real_coor[i][0]/w, real_coor[i][1]/w, 1/w,
                           -sy*real_coor[i][0]/w2, -sy*real_coor[i][1]/w2, -sy/w2]))

    return np.array(J)


#利用Levenberg Marquart算法微调H
def refine_H(pic_coor, real_coor, initial_H):
    initial_H = np.array(initial_H)
    final_H = opt.leastsq(value,
                          initial_H,
                          Dfun=jacobian,
                          args=(pic_coor, real_coor))[0]

    final_H /= np.array(final_H[-1])
    return final_H


#返回微调后的H
def get_homography(pic_coor, real_coor):
    refined_homographies =[]

    error = []
    for i in range(len(pic_coor)):
        initial_H = get_initial_H(pic_coor[i], real_coor[i])
        final_H = refine_H(pic_coor[i], real_coor[i], initial_H)
        refined_homographies.append(final_H)

    return np.array(refined_homographies)

intrinsics.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import numpy as np


#返回pq位置对应的v向量
def create_v(p, q, H):
    H = H.reshape(3, 3)
    return np.array([
        H[0, p] * H[0, q],
        H[0, p] * H[1, q] + H[1, p] * H[0, q],
        H[1, p] * H[1, q],
        H[2, p] * H[0, q] + H[0, p] * H[2, q],
        H[2, p] * H[1, q] + H[1, p] * H[2, q],
        H[2, p] * H[2, q]
    ])


#返回相机内参矩阵A
def get_intrinsics_param(H):
    #构建V矩阵
    V = np.array([])
    for i in range(len(H)):
        V = np.append(V, np.array([create_v(0, 1, H[i]), create_v(0, 0 , H[i])- create_v(1, 1 , H[i])]))

    #求解V*b = 0中的b
    U, S, VT = np.linalg.svd((np.array(V, dtype='float')).reshape((-1, 6)))
    #最小的奇异值对应的奇异向量,S求出来按大小排列的,最后的最小
    b = VT[-1]

    #求取相机内参
    w = b[0] * b[2] * b[5] - b[1] * b[1] * b[5] - b[0] * b[4] * b[4] + 2 * b[1] * b[3] * b[4] - b[2] * b[3] * b[3]
    d = b[0] * b[2] - b[1] * b[1]

    alpha = np.sqrt(w / (d * b[0]))
    beta = np.sqrt(w / d**2 * b[0])
    gamma = np.sqrt(w / (d**2 * b[0])) * b[1]
    uc = (b[1] * b[4] - b[2] * b[3]) / d
    vc = (b[1] * b[3] - b[0] * b[4]) / d

    return np.array([
        [alpha, gamma, uc],
        [0,     beta,  vc],
        [0,     0,      1]
    ])

refine_all.py

#!usr/bin/env/ python
# _*_ coding:utf-8 _*_

import numpy as np
import math
from scipy import optimize as opt

#微调所有参数
def refinall_all_param(A, k, W, real_coor, pic_coor):
    #整合参数
    P_init = compose_paramter_vector(A, k, W)

    #复制一份真实坐标
    X_double = np.zeros((2 * len(real_coor) * len(real_coor[0]), 3))
    Y = np.zeros((2 * len(real_coor) * len(real_coor[0])))

    M = len(real_coor)
    N = len(real_coor[0])
    for i in range(M):
        for j in range(N):
            X_double[(i * N + j) * 2] = (real_coor[i])[j]
            X_double[(i * N + j) * 2 + 1] = (real_coor[i])[j]
            Y[(i * N + j) * 2] = (pic_coor[i])[j, 0]
            Y[(i * N + j) * 2 + 1] = (pic_coor[i])[j, 1]

    #微调所有参数
    P = opt.leastsq(value,
                    P_init,
                    args=(W, real_coor, pic_coor),
                    Dfun=jacobian)[0]

    #raial_error表示利用标定后的参数计算得到的图像坐标与真实图像坐标点的平均像素距离
    error = value(P, W, real_coor, pic_coor)
    raial_error = [np.sqrt(error[2 * i]**2 + error[2 * i + 1]**2) for i in range(len(error) // 2)]

    print("total max error:\t", np.max(raial_error))

    #返回拆解后参数,分别为内参矩阵,畸变矫正系数,每幅图对应外参矩阵
    return decompose_paramter_vector(P)


#把所有参数整合到一个数组内
def compose_paramter_vector(A, k, W):
    alpha = np.array([A[0, 0], A[1, 1], A[0, 1], A[0, 2], A[1, 2], k[0], k[1]])
    P = alpha
    for i in range(len(W)):
        R, t = (W[i])[:, :3], (W[i])[:, 3]

        #旋转矩阵转换为一维向量形式
        zrou = to_rodrigues_vector(R)

        w = np.append(zrou, t)
        P = np.append(P, w)
    return P


#分解参数集合,得到对应的内参,外参,畸变矫正系数
def decompose_paramter_vector(P):
    [alpha, beta, gamma, uc, vc, k0, k1] = P[0:7]
    A = np.array([[alpha, gamma, uc],
                  [0, beta, vc],
                  [0, 0, 1]])
    k = np.array([k0, k1])
    W = []
    M = (len(P) - 7) // 6

    for i in range(M):
        m = 7 + 6 * i
        zrou = P[m:m+3]
        t = (P[m+3:m+6]).reshape(3, -1)

        #将旋转矩阵一维向量形式还原为矩阵形式
        R = to_rotation_matrix(zrou)

        #依次拼接每幅图的外参
        w = np.concatenate((R, t), axis=1)
        W.append(w)

    W = np.array(W)
    return A, k, W


#返回从真实世界坐标映射的图像坐标
def get_single_project_coor(A, W, k, coor):
    single_coor = np.array([coor[0], coor[1], coor[2], 1])

    #'''
    coor_norm = np.dot(W, single_coor)
    coor_norm /= coor_norm[-1]

    #r = np.linalg.norm(coor)
    r = np.linalg.norm(coor_norm)

    uv = np.dot(np.dot(A, W), single_coor)
    uv /= uv[-1]

    #畸变
    u0 = uv[0]
    v0 = uv[1]

    uc = A[0, 2]
    vc = A[1, 2]

    #u = (uc * r**2 * k[0] + uc * r**4 * k[1] - u0) / (r**2 * k[0] + r**4 * k[1] - 1)
    #v = (vc * r**2 * k[0] + vc * r**4 * k[1] - v0) / (r**2 * k[0] + r**4 * k[1] - 1)
    u = u0 + (u0 - uc) * r**2 * k[0] + (u0 - uc) * r**4 * k[1]
    v = v0 + (v0 - vc) * r**2 * k[0] + (v0 - vc) * r**4 * k[1]
    '''
    uv = np.dot(W, single_coor)
    uv /= uv[-1]
    # 透镜矫正
    x0 = uv[0]
    y0 = uv[1]
    r = np.linalg.norm(np.array([x0, y0]))

    k0 = 0
    k1 = 0

    x = x0 * (1 + r ** 2 * k0 + r ** 4 * k1)
    y = y0 * (1 + r ** 2 * k0 + r ** 4 * k1)

    #u = A[0, 0] * x + A[0, 2]
    #v = A[1, 1] * y + A[1, 2]
    [u, v, _] = np.dot(A, np.array([x, y, 1]))
    '''

    return np.array([u, v])


#返回所有点的真实世界坐标映射到的图像坐标与真实图像坐标的残差
def value(P, org_W, X, Y_real):
    M = (len(P) - 7) // 6
    N = len(X[0])
    A = np.array([
        [P[0], P[2], P[3]],
        [0, P[1], P[4]],
        [0, 0, 1]
    ])
    Y = np.array([])

    for i in range(M):
        m = 7 + 6 * i

        #取出当前图像对应的外参
        w = P[m:m + 6]

        # 不用旋转矩阵的变换是因为会有精度损失
        '''
        R = to_rotation_matrix(w[:3])
        t = w[3:].reshape(3, 1)
        W = np.concatenate((R, t), axis=1)
        '''
        W = org_W[i]
        #计算每幅图的坐标残差
        for j in range(N):
            Y = np.append(Y, get_single_project_coor(A, W, np.array([P[5], P[6]]), (X[i])[j]))

    error_Y  =  np.array(Y_real).reshape(-1) - Y

    return error_Y


#计算对应jacobian矩阵
def jacobian(P, WW, X, Y_real):
    M = (len(P) - 7) // 6
    N = len(X[0])
    K = len(P)
    A = np.array([
        [P[0], P[2], P[3]],
        [0, P[1], P[4]],
        [0, 0, 1]
    ])

    res = np.array([])

    for i in range(M):
        m = 7 + 6 * i

        w = P[m:m + 6]
        R = to_rotation_matrix(w[:3])
        t = w[3:].reshape(3, 1)
        W = np.concatenate((R, t), axis=1)

        for j in range(N):
            res = np.append(res, get_single_project_coor(A, W, np.array([P[5], P[6]]), (X[i])[j]))

    #求得x, y方向对P[k]的偏导
    J = np.zeros((K, 2 * M * N))
    for k in range(K):
        J[k] = np.gradient(res, P[k])

    return J.T


#将旋转矩阵分解为一个向量并返回,Rodrigues旋转向量与矩阵的变换,最后计算坐标时并未用到,因为会有精度损失
def to_rodrigues_vector(R):
    p = 0.5 * np.array([[R[2, 1] - R[1, 2]],
                        [R[0, 2] - R[2, 0]],
                        [R[1, 0] - R[0, 1]]])
    c = 0.5 * (np.trace(R) - 1)

    if np.linalg.norm(p) == 0:
        if c == 1:
            zrou = np.array([0, 0, 0])
        elif c == -1:
            R_plus = R + np.eye(3, dtype='float')

            norm_array = np.array([np.linalg.norm(R_plus[:, 0]),
                                   np.linalg.norm(R_plus[:, 1]),
                                   np.linalg.norm(R_plus[:, 2])])
            v = R_plus[:, np.where(norm_array == max(norm_array))]
            u = v / np.linalg.norm(v)
            if u[0] < 0 or (u[0] == 0 and u[1] < 0) or (u[0] == u[1] and u[0] == 0 and u[2] < 0):
                u = -u
            zrou = math.pi * u
        else:
            zrou = []
    else:
        u = p / np.linalg.norm(p)
        theata = math.atan2(np.linalg.norm(p), c)
        zrou = theata * u

    return zrou


#把旋转矩阵的一维向量形式还原为旋转矩阵并返回
def to_rotation_matrix(zrou):
    theta = np.linalg.norm(zrou)
    zrou_prime = zrou / theta

    W = np.array([[0, -zrou_prime[2], zrou_prime[1]],
                  [zrou_prime[2], 0, -zrou_prime[0]],
                  [-zrou_prime[1], zrou_prime[0], 0]])
    R = np.eye(3, dtype='float') + W * math.sin(theta) + np.dot(W, W) * (1 - math.cos(theta))

    return R

参考:https://www.cnblogs.com/wangguchangqing/p/8335131.html

你可能感兴趣的:(张正友相机标定实例)