来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-postorder-traversal/
博主Github:https://github.com/GDUT-Rp/LeetCode
给定一个二叉树,返回它的后序 遍历。
示例 1:
输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]
定义一个辅助递归函数实现。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> ans;
vector<int> postorderTraversal(TreeNode* root) {
postorderHelper(root);
return ans;
}
void postorderHelper(TreeNode *root) {
if (root == NULL) return;
if (root->left != NULL) {
postorderHelper(root->left);
}
if (root->right != NULL) {
postorderHelper(root->right);
}
ans.push_back(root->val);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
//后序遍历递归
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<Integer> ans = new LinkedList<>();
if(root == null)
return ans;
subPostorderTraversal(root, ans);
return ans;
}
private void subPostorderTraversal(TreeNode root, List<Integer> list){
if(root == null){
return;
}
subPostorderTraversal(root.left, list);
subPostorderTraversal(root.right, list);
list.add(root.val);
}
}
# -*- coding: utf-8 -*-
# @File : LeetCode145.py
# @Author : Runpeng Zhang
# @Date : 2020/2/19
# @Desc : 二叉树的后序遍历
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def postorderTraversal(self, root: TreeNode):
"""
二叉树的后序遍历
:rtype: 二叉树的后序遍历结果列表
"""
ans = []
self.postorderHelper(root, ans)
return ans
def postorderHelper(self, root: TreeNode, ans):
"""
二叉树的后序遍历的递归方法
"""
if not root:
return
self.postorderHelper(root.left, ans)
self.postorderHelper(root.right, ans)
ans.append(root.val)
复杂度分析
时间复杂度: O ( n ) O(n) O(n)。
空间复杂度: O ( n ) O(n) O(n)。
从根节点开始,每次迭代弹出当前栈顶元素,插入到第一位中,并将其孩子节点压入栈中,先压左孩子再压右孩子。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> mystack;
vector<int> output;
if (root == NULL) {
return output;
}
mystack.push(root);
while (!mystack.empty()) {
TreeNode *node = mystack.top();
mystack.pop();
output.insert(output.begin(), node->val);
if (node->left != NULL) {
mystack.push(node->left);
}
if (node->right != NULL) {
mystack.push(node->right);
}
}
return output;
}
};
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<TreeNode> stack = new LinkedList<>();
LinkedList<Integer> output = new LinkedList<>();
if (root == null) {
return output;
}
stack.add(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pollLast();
output.addFirst(node.val);
if (node.left != null) {
stack.add(node.left);
}
if (node.right != null) {
stack.add(node.right);
}
}
return output;
}
}
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
"""
利用栈结构进行后序排序,每次先压左孩子,再压右孩子
:rtype: 二叉树的后序遍历结果数组
"""
ans = []
stack = []
if root is not None:
stack.append(root)
while len(stack) > 0:
root = stack.pop()
ans.insert(0, root.val)
if root.left is not None:
stack.append(root.left)
if root.right is not None:
stack.append(root.right)
return ans
算法复杂度:
时间复杂度:访问每个节点恰好一次,时间复杂度为 O ( N ) O(N) O(N) ,其中 N N N 是节点的个数,也就是树的大小。
空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O ( N ) O(N) O(N)。