裸的并查集,每次修好一个点之后就扫一遍,将它与在它连接范围内的之前就修好的点进行合并,唯一需要注意的点就是可以用点之间距离的平方来避免精度问题
#include
#include
#include
const int MAXN = 10000 + 5;
struct Point {
int x, y;
} point[MAXN];
struct Union_Find {
int dad[MAXN];
int n;
void init() {
for (int i = 1; i <= n; i++)
dad[i] = i;
}
Union_Find(int n) {
this->n = n;
init();
}
int find(int x) {
if (dad[x] != x) dad[x] = find(dad[x]);
return dad[x];
}
void merge(int x, int y) {
dad[find(x)] = find(y);
}
bool judge(int x, int y) {
return find(x) == find(y);
}
};
int n, d;
bool is_fixed[MAXN];
int dis(Point a, Point b) {
int ans = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
return ans;
}
int main()
{
scanf("%d %d", &n, &d);
d *= d; Union_Find uf(n);
for (int i = 1; i <= n; i++) {
scanf("%d %d", &point[i].x, &point[i].y);
}
char f;
while (std::cin >> f) {
if (f == 'O') {
int x;
scanf("%d", &x);
is_fixed[x] = true;
for (int i = 1; i <= n; i++) {
if (i == x) continue;
if (is_fixed[i] && dis(point[i], point[x]) <= d) uf.merge(x, i);
}
}
else {
int x, y;
scanf("%d %d", &x, &y);
uf.judge(x, y) ? puts("SUCCESS") : puts("FAIL");
}
}
return 0;
}
这道题需要询问带元素 0 0 0 的集合的元素个数,可以开一个数组 s u m [ i ] sum[i] sum[i] ,表示以 i i i 为根节点的集合的元素个数,因为每个集合的元素个数都保存在根节点上了,所以在合并和输出的时候都要找到根节点来进行操作
#include
#include
const int MAXN = 30000 + 2;
int n, m;
struct Union_Find {
int dad[MAXN], sum[MAXN];
int n;
void init() {
for (int i = 0; i < n; i++) {
dad[i] = i;
sum[i] = 1;
}
}
Union_Find(int n) {
this->n = n;
init();
}
int find(int x) {
if (dad[x] != x) dad[x] = find(dad[x]);
return dad[x];
}
void merge(int a, int b) {
int x = find(a);
int y = find(b);
if (x != y) {
dad[y] = x;
sum[x] += sum[y];
}
}
};
int main()
{
while (scanf("%d %d", &n, &m) != EOF) {
if (n == 0 && m == 0) break;
Union_Find uf(n);
for (int i = 1; i <= m; i++) {
int k;
scanf("%d", &k);
int x, y;
scanf("%d", &x);
k--;
while (k--) {
scanf("%d", &y);
uf.merge(x, y);
}
}
printf("%d\n", uf.sum[uf.find(0)]);
}
return 0;
}
每次合并都会少一个桌子,所以维护一个 s u m sum sum 表示桌子的数量即可
#include
#include
const int MAXN = 1000 + 5;
struct Union_Find {
int dad[MAXN];
int n, sum;
void init() {
for (int i = 1; i <= n; i++)
dad[i] = i;
sum = n;
}
Union_Find(int n) {
this->n = n;
init();
}
int find(int x) {
if (dad[x] != x) dad[x] = find(dad[x]);
return dad[x];
}
void merge(int x, int y) {
dad[find(x)] = find(y);
sum--;
}
bool judge(int x, int y) {
return find(x) == find(y);
}
};
int main()
{
int t;
scanf("%d", &t);
while (t--) {
int n, m;
scanf("%d %d", &n, &m);
Union_Find uf(n);
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d %d", &x, &y);
if (!uf.judge(x, y)) uf.merge(x, y);
}
printf("%d\n", uf.sum);
}
return 0;
}