Python操作TDengine并进行简单风机预测应用

Python操作TDengine并进行简单风机预测应用

一、安装

Linux端安装Python Connector

1、确保Linux环境下安装了Python环境,我的python版本Python3.6.0。
在这里插入图片描述

2、从https://github.com/taosdata/TDengine下载源码,解压后放到服务器上创建的TDengine目录下,在源代码的src/connector/python文件夹下可以找到linux和windows两个版本的安装包。进入linux目录,通过pip命令来安装taos。

pip install python3/

3、执行命令python进入交互式界面,输入import taos报错。
Python操作TDengine并进行简单风机预测应用_第1张图片
4、出现上面错误的原因是:libtaos.so文件在/usr/lib目录下,而centos默认不会找/usr/lib下的文件。

解决方法:在环境变量/etc/profile中配置libtaos.so路径。

编辑配置文件:vim /etc/profile
添加配置:export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib
使修改生效:source /etc/profile

5、再次进入python交互式界面,导入taos模块成功。

Python操作TDengine并进行简单风机预测应用_第2张图片

python接收MQTT数据

Windows端安装Python Connector:

1、利用pip安装TDengine源代码中src\connector\python\windows目录下的python3对应的taos模块。

2、从官网https://www.taosdata.com/cn/getting-started/中下载TDengine Windows客户端tdengine-windows-client-x64-1.6.1.6.exe。

3、双击exe可执行文件,安装客户端,默认下一步到安装完成即可。

4、通过代码,查看windows是否可以访问TDengine

#!/usr/bin/env python
# coding=utf-8
#######################################################################
#    > File Name: 
#    > Author: cuiyufei
#    > Mail: [email protected]
#    > Created Time: 2019年8月22日
#######################################################################
import taos
import pandas as pd

if __name__ == '__main__':  
    #连接taos数据库
    conn = taos.connect(host='10.1.131.14', user='root', password='taosdata', database='log')
    
    # 通过获取到的数据库连接conn下的cursor()方法来创建游标
    cursor = conn.cursor()
    # Create a database named db
    #try:
    #    cursor.execute('create database test1')
    #except Exception as err:
    #    conn.close()
    #    raise(err)
    
    sql = "SELECT * FROM log"
    
    # read_sql 方法返回的数据类型是DataFrame
    dataframe = pd.read_sql(sql, con=conn)
    print dataframe 
    

出现如下图错误。
Python操作TDengine并进行简单风机预测应用_第3张图片

最后发现,是由于客户端版本和服务端版本不一致导致的。

taos -h you IP

windows端:

[外链图片转存失败(img-BGLGwokT-1566452074041)(C:\Users\cuiyufei\AppData\Roaming\Typora\typora-user-images\1566445182579.png)]

Linux端:

taos -V

[外链图片转存失败(img-KTboaDap-1566452074042)(C:\Users\cuiyufei\AppData\Roaming\Typora\typora-user-images\1566445238894.png)]

升级Linux端的taos版本

systemctl stop taosd
rpm -qa | grep -i tdengine
rpm -e tdengine-1.6.1.5-3.el7.x86_64

rpm -ivh tdengine-1.6.1.6-3.el7.x86_64.rpm 
systemctl start taosd
systemctl status taosd

升级后,连接成功。

Python操作TDengine并进行简单风机预测应用_第4张图片

二、python操作TDengine

官网python的相关例子https://github.com/taosdata/TDengine/blob/master/tests/examples/python/read_example.py

#!/usr/bin/env python
# coding=utf-8
#######################################################################
#    > File Name: 
#    > Author: cuiyufei
#    > Mail: [email protected]
#    > Created Time: 2019年8月22日
#######################################################################
import taos
import sys
import datetime
import random

def exitProgram(conn):
    conn.close()
    sys.exit()

if __name__ == '__main__':
    start_time = datetime.datetime(2019, 7, 1)
    time_interval = datetime.timedelta(seconds=60)

    # Connect to TDengine server.
    # 
    # parameters:
    # @host     : TDengine server IP address 
    # @user     : Username used to connect to TDengine server
    # @password : Password 
    # @database : Database to use when connecting to TDengine server
    # @config   : Configuration directory
    conn = taos.connect(host="your IP", user="root", password="taosdata", config="/etc/taos")
    

    # Generate a cursor object to run SQL commands
    c1 = conn.cursor()

    # Create a database named db
    try:
        c1.execute('create database db')
    except Exception as err:
        conn.close()
        raise(err)
        
    # use database
    try:
        c1.execute('use db')
    except Exception as err:
        conn.close()
        raise(err)
 
 
    # create table
    try:
        c1.execute('create table if not exists t (ts timestamp, a int, b float, c binary(20))')
    except Exception as err:
        conn.close()
        raise(err)
 
    # insert data 
    for i in range(10000):
        try:
            c1.execute("insert into t values ('%s', %d, %f, '%s')" % (start_time, random.randint(1,10), random.randint(1,10)/10.0, 'hello'))
        except Exception as err:
            conn.close()
            raise(err)
        start_time += time_interval
 
    # query data and return data in the form of list
    try:
        c1.execute('select * from db.t')
    except Exception as err:
        conn.close()
        raise(err)
 
    # Column names are in c1.description list
    cols = c1.description
    # Use fetchall to fetch data in a list
    data = c1.fetchall()
 
    try:
        c1.execute('select * from db.t')
    except Exception as err:
        conn.close()
        raise(err)
 
    # Use iterator to go through the retreived data
    for col in c1:
        print(col)
 
    conn.close()

三、接收mqtt数据并存入TDengine

从mqtt接收数据,通过模型进行数据预测,然后把数据写入TDengine

#!/usr/bin/env python
# coding=utf-8
#######################################################################
#    > File Name: 
#    > Author: cuiyufei
#    > Mail: [email protected]
#    > Created Time: 2019年8月22日
#######################################################################
import paho.mqtt.client as mqtt
import datetime
from sklearn.externals import joblib
from influxdb import InfluxDBClient
import taos
import random

# INFLUXDB
TAOS_HOST = "your IP"
TAOS_USER = "root"
TAOS_PASSWORD = "taosdata"
TASO_DB = 'your database'

# MQTT
MQTT_HOST = "your IP"
MQTT_PORT = PORT
MQTT_TOPIC = 'your topic'

def insert_influxdb(msg):
    current_time = datetime.datetime.utcnow()#.isoformat()
    print(msg.topic+" " + ":" + str(msg.payload))
    feats = ['wind_speed', 'generator_speed', 'power', 'wind_direction',
             'wind_direction_mean', 'yaw_position', 'yaw_speed', 'pitch1_angle',
             'pitch2_angle', 'pitch3_angle', 'pitch1_speed', 'pitch2_speed',
             'pitch3_speed', 'pitch1_moto_tmp', 'pitch2_moto_tmp', 'pitch3_moto_tmp',
             'acc_x', 'acc_y', 'environment_tmp', 'int_tmp',
             'pitch1_ng5_tmp', 'pitch2_ng5_tmp', 'pitch3_ng5_tmp', 'pitch1_ng5_DC',
             'pitch2_ng5_DC', 'pitch3_ng5_DC', 'group']
    feats_value = [float(value) for value in (eval(msg.payload)[1:])]
    # 风机预测
    model = './model/gbm.pkl'
    clf = joblib.load(model)
    sub_preds = clf.predict_proba([feats_value], num_iteration=clf.best_iteration_)[:, 1]
    print(sub_preds[0])
        
    conn = taos.connect(host=TAOS_HOST, user=TAOS_USER, password=TAOS_PASSWORD, database=TASO_DB)
    cursor = conn.cursor()

    try:
        #cursor.execute("insert into t values ('%s', %d, %.14f, '%s')" % (current_time, feats_value[0], feats_value[1], 'hello'))
        cursor.execute("insert into wind_driven_generator values ('%s', %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f)" %(current_time, feats_value[0], feats_value[1], feats_value[2], feats_value[3], feats_value[4], feats_value[5], feats_value[6], feats_value[7], feats_value[8], feats_value[9], feats_value[10], feats_value[11], feats_value[12], feats_value[13], feats_value[14], feats_value[15], feats_value[16], feats_value[17], feats_value[18], feats_value[19], feats_value[20], feats_value[21], feats_value[22], feats_value[23], feats_value[24], feats_value[25], feats_value[26], sub_preds[0]))
    except Exception as err:
        conn.close()
        raise(err)
    conn.close()
if __name__ == '__main__':
    #influxdb_client = InfluxDBClient(host=INFLUXDB_HOST, port=INFLUXDB_PORT, username=INFLUXDB_USER, password=INFLUXDB_PASSWORD, database=INFLUXDB_DB)
    mqtt_client = mqtt.Client()
    mqtt_client.on_connect = lambda self, mosq, obj, rc: self.subscribe(MQTT_TOPIC)
    mqtt_client.on_message = lambda client, userdata, msg: insert_influxdb(msg)
    mqtt_client.connect(MQTT_HOST, MQTT_PORT, 60)
    try:
        mqtt_client.loop_forever()
    except KeyboardInterrupt:
        print("stop...")

参考文章

Python操作TDengine

https://blog.csdn.net/jinwang3526/article/details/81537297

https://blog.csdn.net/qq_28877125/article/details/78325003

涛思官网

你可能感兴趣的:(机器学习)