Linux芯片级移植与底层驱动(基于3.7.4内核) --SMP多核启动以及CPU热插拔驱动

出处:http://21cnbao.blog.51cto.com/109393/1143518


在Linux系统中,对于多核的ARM芯片而言,Bootrom代码中,CPU0会率先起来,引导Bootloader和Linux内核执行,而其他的核则在上电时Bootrom一般将自身置于WFI或者WFE状态,并等待CPU0给其发CPU核间中断(IPI)或事件(一般透过SEV指令)唤醒之。一个典型的启动过程如下图:

 

被CPU0唤醒的CPUn可以在运行过程中进行热插拔。譬如运行如下命令即可卸载CPU1并且将CPU1上的任务全部迁移到其他CPU:

# echo 0 > /sys/devices/system/cpu/cpu1/online

同样地,运行如下命令可以再次启动CPU1:

# echo 1 > /sys/devices/system/cpu/cpu1/online

之后CPU1会主动参与系统中各个CPU之间要运行任务的负载均衡工作。

CPU0唤醒其他 CPU的动作在内核中被封装为一个smp_operations的结构体,该结构体的成员如下:

  83struct smp_operations {

  84#ifdef CONFIG_SMP

  85        /*

  86         * Setup the set of possible CPUs (via set_cpu_possible)

  87         */

  88        void (*smp_init_cpus)(void);

  89        /*

  90         * Initialize cpu_possible map, and enable coherency

  91         */

  92        void (*smp_prepare_cpus)(unsigned int max_cpus);

  93

  94        /*

  95         * Perform platform specific initialisation of the specified CPU.

  96         */

  97        void (*smp_secondary_init)(unsigned int cpu);

  98        /*

  99         * Boot a secondary CPU, and assign it the specified idle task.

 100         * This also gives us the initial stack to use for this CPU.

 101         */

 102        int  (*smp_boot_secondary)(unsigned int cpu, struct task_struct *idle);

 103#ifdef CONFIG_HOTPLUG_CPU

 104        int  (*cpu_kill)(unsigned int cpu);

 105        void (*cpu_die)(unsigned int cpu);

 106        int  (*cpu_disable)(unsigned int cpu);

 107#endif

 108#endif

 109};

      我们从arch/arm/mach-vexpress/v2m.c看到VEXPRESS电路板用到的smp_ops为vexpress_smp_ops:

666DT_MACHINE_START(VEXPRESS_DT, "ARM-Versatile Express")

 667        .dt_compat      = v2m_dt_match,

 668        .smp            = smp_ops(vexpress_smp_ops),

 669        .map_io         = v2m_dt_map_io,

 670        .init_early     = v2m_dt_init_early,

 671        .init_irq       = v2m_dt_init_irq,

 672        .timer          = &v2m_dt_timer,

 673        .init_machine   = v2m_dt_init,

 674        .handle_irq     = gic_handle_irq,

 675        .restart        = v2m_restart,

 676MACHINE_END

透过arch/arm/mach-vexpress/platsmp.c的实现代码可以看出,smp_operations的成员函数smp_init_cpus()即vexpress_smp_init_cpus()会探测SoC内CPU核的个数,并设置了核间通信的方式为gic_raise_softirq()。可见于vexpress_smp_init_cpus()中调用的vexpress_dt_smp_init_cpus():

103static void __init vexpress_dt_smp_init_cpus(void)

 104{

 …

128        for (i = 0; i < ncores; ++i)

 129                set_cpu_possible(i, true);

 130

 131        set_smp_cross_call(gic_raise_softirq);

 132}

而smp_operations的成员函数smp_prepare_cpus()即vexpress_smp_prepare_cpus()则会透过v2m_flags_set(virt_to_phys(versatile_secondary_startup))设置其他CPU的启动地址为versatile_secondary_startup:

179static void __init vexpress_smp_prepare_cpus(unsigned int max_cpus)

 180{

 181        …

 189

 190        /*

 191         * Write the address of secondary startup into the

 192         * system-wide flags register. The boot monitor waits

 193         * until it receives a soft interrupt, and then the

 194         * secondary CPU branches to this address.

 195         */

 196        v2m_flags_set(virt_to_phys(versatile_secondary_startup));

 197}

注意这部分的具体实现方法是SoC相关的,由芯片的设计以及芯片内部的Bootrom决定。对于VEXPRESS来讲,设置方法如下:

139void __init v2m_flags_set(u32 data)

 140{

 141        writel(~0, v2m_sysreg_base + V2M_SYS_FLAGSCLR);

 142        writel(data, v2m_sysreg_base + V2M_SYS_FLAGSSET);

 143}

即填充v2m_sysreg_base + V2M_SYS_FLAGSCLR地址为0xFFFFFFFF,将其他CPU初始启动执行的指令地址填入v2m_sysreg_base + V2M_SYS_FLAGSSET。这2个地址属于芯片实现时候设定的。填入的CPUn的起始地址都透过virt_to_phys()转化为物理地址,因为此时CPUn的MMU尚未开启。

比较关键的是smp_operations的成员函数smp_boot_secondary(),它完成最终的CPUn的唤醒工作:

  27static void __cpuinit write_pen_release(int val)

  28{

  29        pen_release = val;

  30        smp_wmb();

  31        __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));

  32        outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));

  33}

 

  59int __cpuinit versatile_boot_secondary(unsigned int cpu, struct task_struct *idle)

  60{

  61        unsigned long timeout;

  62

  63        /*

  64         * Set synchronisation state between this boot processor

  65         * and the secondary one

  66         */

  67        spin_lock(&boot_lock);

  68

  69        /*

  70         * This is really belt and braces; we hold unintended secondary

  71         * CPUs in the holding pen until we're ready for them.  However,

  72         * since we haven't sent them a soft interrupt, they shouldn't

  73         * be there.

  74         */

  75        write_pen_release(cpu_logical_map(cpu));

  76

  77        /*

  78         * Send the secondary CPU a soft interrupt, thereby causing

  79         * the boot monitor to read the system wide flags register,

  80         * and branch to the address found there.

  81         */

  82        gic_raise_softirq(cpumask_of(cpu), 0);

  83

  84        timeout = jiffies + (1 * HZ);

  85        while (time_before(jiffies, timeout)) {

  86                smp_rmb();

  87                if (pen_release == -1)

  88                        break;

  89

  90                udelay(10);

  91        }

  92

  93        /*

  94         * now the secondary core is starting up let it run its

  95         * calibrations, then wait for it to finish

  96         */

  97        spin_unlock(&boot_lock);

  98

  99        return pen_release != -1 ? -ENOSYS : 0;

 100}

上述代码中高亮的部分首先会将pen_release变量设置为要唤醒的CPU核的CPU号cpu_logical_map(cpu),而后透过gic_raise_softirq(cpumask_of(cpu), 0)给CPUcpu发起0号IPI,这个时候,CPUcpu核会从前面smp_operations中的smp_prepare_cpus()成员函数即vexpress_smp_prepare_cpus()透过v2m_flags_set()设置的其他CPU核的起始地址versatile_secondary_startup开始执行,如果顺利的话,该CPU会将原先为正数的pen_release写为-1,以便CPU0从等待pen_release成为-1的循环中跳出。

versatile_secondary_startup实现于arch/arm/plat-versatile/headsmp.S,是一段汇编:

  21ENTRY(versatile_secondary_startup)

  22        mrc     p15, 0, r0, c0, c0, 5

  23        and     r0, r0, #15

  24        adr     r4, 1f

  25        ldmia   r4, {r5, r6}

  26        sub     r4, r4, r5

  27        add     r6, r6, r4

  28pen:    ldr     r7, [r6]

  29        cmp     r7, r0

  30        bne     pen

  31

  32        /*

  33         * we've been released from the holding pen: secondary_stack

  34         * should now contain the SVC stack for this core

  35         */

  36        b       secondary_startup

  37

  38        .align

  391:      .long   .

  40        .long   pen_release

  41ENDPROC(versatile_secondary_startup)

第1段高亮的部分实际上是等待pen_release成为CPU0设置的cpu_logical_map(cpu),一般直接就成立了。第2段高亮的部分则调用到内核通用的secondary_startup()函数,经过一系列的初始化如MMU等,最终新的被唤醒的CPU将调用到smp_operations的smp_secondary_init()成员函数,对于本例为versatile_secondary_init():

  37void __cpuinit versatile_secondary_init(unsigned int cpu)

  38{

  39        /*

  40         * if any interrupts are already enabled for the primary

  41         * core (e.g. timer irq), then they will not have been enabled

  42         * for us: do so

  43         */

  44        gic_secondary_init(0);

  45

  46        /*

  47         * let the primary processor know we're out of the

  48         * pen, then head off into the C entry point

  49         */

  50        write_pen_release(-1);

  51

  52        /*

  53         * Synchronise with the boot thread.

  54         */

  55        spin_lock(&boot_lock);

  56        spin_unlock(&boot_lock);

  57}

上述代码中高亮的那1行会将pen_release写为-1,于是CPU0还在执行的 versatile_boot_secondary()函数中的如下循环就退出了:

  85        while (time_before(jiffies, timeout)) {

  86                smp_rmb();

  87                if (pen_release == -1)

  88                        break;

  89

  90                udelay(10);

  91        }

此后CPU0和新唤醒的其他CPU各自狂奔。整个系统在运行过程中会进行实时进程和正常进程的动态负载均衡。

CPU hotplug的实现也是芯片相关的,对于VEXPRESS而言,实现了smp_operations的cpu_die()成员函数即vexpress_cpu_die()。它会在进行CPUn的拔除操作时将CPUn投入低功耗的WFI状态,相关代码位于arch/arm/mach-vexpress/hotplug.c:

  90void __ref vexpress_cpu_die(unsigned int cpu)

  91{

  92        int spurious = 0;

  93

  94        /*

  95         * we're ready for shutdown now, so do it

  96         */

  97        cpu_enter_lowpower();

  98        platform_do_lowpower(cpu, &spurious);

  99

 100        /*

 101         * bring this CPU back into the world of cache

 102         * coherency, and then restore interrupts

 103         */

 104        cpu_leave_lowpower();

 105

 106        if (spurious)

 107                pr_warn("CPU%u: %u spurious wakeup calls\n", cpu, spurious);

 108}

  57static inline void platform_do_lowpower(unsigned int cpu, int *spurious)

  58{

  59        /*

  60         * there is no power-control hardware on this platform, so all

  61         * we can do is put the core into WFI; this is safe as the calling

  62         * code will have already disabled interrupts

  63         */

  64        for (;;) {

  65                wfi();

  66

  67                if (pen_release == cpu_logical_map(cpu)) {

  68                        /*

  69                         * OK, proper wakeup, we're done

  70                         */

  71                        break;

  72                }

  73

  74                /*

  75                 * Getting here, means that we have come out of WFI without

  76                 * having been woken up - this shouldn't happen

  77                 *

  78                 * Just note it happening - when we're woken, we can report

  79                 * its occurrence.

  80                 */

  81                (*spurious)++;

  82        }

  83}

CPUn睡眠于wfi(),之后再次online的时候,又会因为CPU0给它发出的IPI而从wfi()函数返回继续执行,醒来时CPUn也判决了是否pen_release == cpu_logical_map(cpu)成立,以确定该次醒来确确实实是由CPU0唤醒的一次正常醒来。


你可能感兴趣的:(arm)