hdu2665Kth number[求区间第k大,静态不带修改]

dalao们的博客:
一篇总结
线段树实现的另一种方法:二分的是值
hdu2665
线段树:

//线段树求区间第k大
//给定你一个长度为S的无序序列,每次询问其间一段[L,R],问在这一段中的第k大数是多少
//O(q*(log n)^3)
//线段树维护归并排序的过程,线段树的每一个结点是一个区间,且里面的数有序
//因为占用空间太大,只能开成vector
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define N 100005
struct node
{
	vector<int> v;
	int l,r;
}tr[4*N];
int n,q,l,r,k,T;
int a[N];
void build(int p, int l, int r)
{
	tr[p].l = l;tr[p].r = r;
	tr[p].v.clear();
	if (l == r)
	{
		tr[p].v.push_back(a[l]);
		return ;
	}
	int mid = (l + r) >> 1;
	build(p<<1, l, mid);
	build(p<<1|1,mid+1,r);
	tr[p].v.resize(r - l + 1);//?
	merge(tr[p<<1].v.begin(), tr[p<<1].v.end(), tr[p<<1|1].v.begin(), tr[p<<1|1].v.end(), tr[p].v.begin());
}
int query(int p, int l, int r, int x)
{
	if (tr[p].l == l && tr[p].r == r)
		return upper_bound(tr[p].v.begin(), tr[p].v.end(), x) - tr[p].v.begin();
	int mid = (tr[p].l + tr[p].r) >> 1;
	if (r <= mid) return query(p<<1,l,r,x);
	if (l > mid) return query(p<<1|1,l,r,x);
	if (l <= mid && r > mid)
		return query(p<<1,l,mid, x) + query(p<<1|1,mid+1,r,x);	
}
int solve(int ql, int qr, int k)
{
	int l = 1, r = n, mid;
	while (l < r)
	{
		mid = (l + r) >> 1;
		//cout<
		if (query(1,ql,qr,a[mid]) >= k)
			r = mid;
		else l = mid + 1;
	}
	return a[l];
}
int main()
{
	scanf("%d", &T);
	while(T--)
	{
		scanf("%d%d", &n, &q);
		for (int i=1;i<=n;i++)
			scanf("%d", &a[i]);
		build(1,1,n);
		sort(a+1,a+n+1);
		while (q--)
		{
			scanf("%d%d%d", &l, &r, &k);
			printf("%d\n", solve(l,r,k));
		}
	}
}

主席树:
对原理的讲解

//静态区间第k大,主席树
//hdu2665
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define N 100005
#define LOG 20//开大一点
int T,n,m,q,tot,s,t,k;
int a[N], b[N];
int root[N];
struct node
{
	int ls, rs, sum;//这里没有写l,r,写在函数的参数里了
}tr[N*LOG];
int build(int l, int r)
{
	int now = ++tot;
	tr[now].sum = 0;
	if (l < r)
	{
		int mid = (l + r) >> 1;
		tr[now].ls = build(l, mid);
		tr[now].rs = build(mid+1,r);
	}
	return now;
}
int insert(int pre, int l, int r, int x)
{
	int now = ++tot;
	tr[now] = tr[pre];
	tr[now].sum++;
	if (l < r)
	{
		int mid = (l + r) >> 1;
		if (x <= mid) tr[now].ls = insert(tr[pre].ls, l, mid, x);
		else tr[now].rs = insert(tr[pre].rs, mid+1, r, x);
	}
	return now;
}
int query(int s, int t, int l, int r, int k)
{
	if (l == r) return l;
	int sum = tr[tr[t].ls].sum - tr[tr[s].ls].sum;
	int mid = (l + r) >> 1;
	if (sum >= k)
		return query(tr[s].ls, tr[t].ls, l, mid, k);
	else return query(tr[s].rs, tr[t].rs, mid+1, r, k - sum);
}
int main()
{
	scanf("%d", &T);
	while (T--)
	{
		tot = 0;
		scanf("%d%d", &n, &q);
		for (int i=1;i<=n;i++)
		{
			scanf("%d", &a[i]);
			b[i] = a[i];
		}
		sort(b+1,b+n+1);
		m = unique(b+1,b+n+1) - (b+1);
		root[0] = build(1,m);
		for (int i=1;i<=n;i++)
		{
			int t = lower_bound(b+1, b+m+1, a[i]) - b;
			root[i] = insert(root[i-1], 1, m, t);
		}
		while (q--)
		{
			scanf("%d%d%d", &s, &t, &k);
			printf("%d\n", b[query(root[s-1], root[t], 1, m, k)]);
		}
	}
}

你可能感兴趣的:(高级数据结构)