58同城数据库架构设计思路(下)

《58同城数据库架构设计思路》(下)

WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城分享了《大数据量下,58同城mysql实战(上)》的主题(回复“同城”查看)。

DTCC(Database Tech Conference China)2015,中国数据库技术大会举办在即,会上58同城将分享《数据库架构师做什么?58同城数据库架构设计思路(下)》,大会内容抢先看,一起来看看58同城怎么玩数据库架构设计的。

58同城数据库架构设计思路

(1)可用性设计

解决思路:复制+冗余

副作用:复制+冗余一定会引发一致性问题

保证“读”高可用的方法:复制从库,冗余数据,如下图

58同城数据库架构设计思路(下)_第1张图片
带来的问题:主从不一致

解决方案:见下文

保证“写”高可用的一般方法:双主模式,即复制主库(很多公司用单master,此时无法保证写的可用性),冗余数据,如下图

58同城数据库架构设计思路(下)_第2张图片
带来的问题:双主同步key冲突,引不一致

解决方案:

a)方案一:由数据库或者业务层保证key在两个主上不冲突

b)方案二:见下文

58同城保证“写”高可用的方法:“双主”当“主从”用,不做读写分离,在“主”挂掉的情况下,“从”(其实是另外一个主),顶上,如下图

58同城数据库架构设计思路(下)_第3张图片
优点:读写都到主,解决了一致性问题;“双主”当“主从”用,解决了可用性问题

带来的问题:读性能如何扩充?解决方案见下文

(2)读性能设计:如何扩展读性能

最常用的方法是,建立索引

建立非常多的索引,副作用是:

a)降低了写性能

b)索引占内存多了,放在内存中的数据就少了,数据命中率就低了,IO次数就多了

但是否想到,不同的库可以建立不同的索引呢?如下图

58同城数据库架构设计思路(下)_第4张图片
TIPS:不同的库可以建立不同索引

主库只提供写,不建立索引

online从库只提供online读,建立online读索引

offline从库只提供offline读,建立offline读索引

提高读性能常见方案二,增加从库

58同城数据库架构设计思路(下)_第5张图片

上文已经提到,这种方法会引发主从不一致问题,从库越多,主从时延越长,不一致问题越严重

这种方案很常见,但58没有采用

提高读性能方案三,增加缓存

传统缓存的用法是:

a)发生写请求时,先淘汰缓存,再写数据库

b)发生读请求时,先读缓存,hit则返回,miss则读数据库并将数据入缓存(此时可能旧数据入缓存),如下图

58同城数据库架构设计思路(下)_第6张图片
带来的问题:

a)如上文所述,数据复制会引发一致性问题,由于主从延时的存在,可能引发缓存与数据库数据不一致

b)所有app业务层都要关注缓存,无法屏蔽“主+从+缓存”的复杂性

58同城缓存使用方案:服务+数据+缓存

58同城数据库架构设计思路(下)_第7张图片
好处是:

1)引入服务层屏蔽“数据库+缓存”

2)不做读写分离,读写都到主的模式,不会引发不一致

(3)一致性设计

主从不一致解决方案

方案一:引入中间件

58同城数据库架构设计思路(下)_第8张图片
中间件将key上的写路由到主,在一定时间范围内(主从同步完成的经验时间),该key上的读也路由到主

方案二:读写都到主

58同城数据库架构设计思路(下)_第9张图片

上文已经提到,58同城采用了这种方法,不做读写分离,不会不一致

数据库与缓存不一致解决方案

两次淘汰法

58同城数据库架构设计思路(下)_第10张图片

异常的读写时序,或导致旧数据入缓存,一次淘汰不够,要进行二次淘汰

a)发生写请求时,先淘汰缓存,再写数据库,额外增加一个timer,一定时间(主从同步完成的经验时间)后再次淘汰

b)发生读请求时,先读缓存,hit则返回,miss则读数据库并将数据入缓存(此时可能旧数据入缓存,但会被二次淘汰淘汰掉,最终不会引发不一致)

(4)扩展性设计

(4.1)58同城秒级别数据扩容

需求:原来水平切分为N个库,现在要扩充为2N个库,希望不影响服务,在秒级别完成

58同城数据库架构设计思路(下)_第11张图片
最开始,分为2库,0库和1库,均采用“双主当主从用”的模式保证可用性

58同城数据库架构设计思路(下)_第12张图片
接下来,将从库提升,并修改服务端配置,秒级完成扩库

由于是2扩4,不会存在数据迁移,原来的0库变为0库+2库,原来的1库变为1库和3库

此时损失的是数据的可用性

58同城数据库架构设计思路(下)_第13张图片
最后,解除旧的双主同步(0库和2库不会数据冲突),为了保证可用性增加新的双主同步,并删除掉多余的数据

这种方案可以秒级完成N库到2N库的扩容。

存在的问题:只能完成N库扩2N库的扩容(不需要数据迁移),非通用扩容方案(例如3库扩4库就无法完成)

(4.2)非指数扩容,数据库增加字段,数据迁移

[这些方法在(上)篇中都已经介绍过,此处不再冗余,有兴趣的朋友回复“同城”回看(上)篇]

方案一:追日志方案

方案二:双写方案

(4.3)水平切分怎么切

四类场景覆盖99%拆库业务

a)“单key”场景,用户库如何拆分: user(uid, XXOO)

b)“1对多”场景,帖子库如何拆分: tiezi(tid, uid, XXOO)

c)“多对多”场景,好友库如何拆分: friend(uid, friend_uid, XXOO)

d)“多key”场景,订单库如何拆分:order(oid, buyer_id, seller_id, XXOO)

[这些拆库方案在(上)篇中都已经介绍过,此处不再冗余,有兴趣的朋友回复“同城”回看(上)篇]

(5)海量数据下,SQL怎么玩

不会这么玩

a)各种联合查询

b)子查询

c)触发器

d)用户自定义函数

e)“事务”都用的很少

原因:对数据库性能影响极大

拆库后,IN查询怎么玩[回复“同城”回看(上)篇]

拆库后,非Partition key的查询怎么玩[回复“同城”回看(上)篇]

拆库后,夸库分页怎么玩?[回复“同城”回看(上)篇]

问题的提出与抽象:ORDER BY xxx OFFSET xxx LIMIT xxx

单机方案:ORDER BY time OFFSET 10000 LIMIT 100

分库后的难题:如何确认全局偏移量

分库后传统解决方案:查询改写+内存排序

a)ORDER BY time OFFSET 0 LIMIT 10000+100

b)对20200条记录进行排序

c)返回第10000至10100条记录

优化方案一:增加辅助id,以减少查询量

优化方案二:模糊查询

a)业务上:禁止查询XX页之后的数据

b)业务上:允许模糊返回 => 第100页数据的精确性真这么重要么?

最后的大招!!!(由于时间问题,只在DTCC2015上分享了哟)

优化方案三:终极方案,业务无损,查询改写与两段查询

需求:ORDER BY x OFFSET 10000 LIMIT 4; 如何在分库下实现(假设分3库)

步骤一、查询改写: ORDER BY x OFFSET 3333 LIMIT 4

[4,7,9,10] <= 1库返回

[3,5,6,7] <= 2库返回

[6,8,9,11] <= 3库返回

步骤二、找到步骤一返回的min和max,即3和11

步骤三、通过min和max二次查询:ORDER BY x WHERE x BETWEEN 3 AND 11

[3,4,7,9,10] <= 1库返回,4在1库offset是3333,于是3在1库的offset是3332

[3,5,6,7,11] <= 2库返回,3在2库offset是3333

[3,5,6,8,9,11] <= 3库返回,6在3库offset是3333,于是3在3库的offset是3331

步骤四、找出全局OFFSET

3是全局offset3332+3333+3331=9996

当当当当,跳过3,3,3,4,于是全局OFFSET 10000 LIMIT 4是[5,5,6,6]

总结:58同城数据库架构设计思路

(1)可用性,解决思路是冗余(复制)

(1.1)读可用性:多个从库

(1.2)写可用性:双主模式 or 双主当主从用(58的玩法)

(2)读性能,三种方式扩充读性能

(2.1)增加索引:主从上的索引可以不一样

(2.2)增加从库

(2.3)增加缓存:服务+缓存+数据一套(58的玩法)

(3)一致性

(3.1)主从不一致:引入中间层 or 读写都走主库(58的玩法)

(3.2)缓存不一致:双淘汰来解决缓存不一致问题

(4)扩展性

(4.1)数据扩容:提升从库,double主库,秒级扩容

(4.2)字段扩展:追日志法 or 双写法

(4.3)水平切分

(单key)用户库如何拆分:, user(uid XXOO)

(1对多)帖子库如何拆分: tiezi(tid, uid, XXOO)

(多对多)好友库如何拆分: friend(uid, friend_uid, XXOO)

(多key)订单库如何拆分:order(oid, buyer_id, seller_id, XXOO)

(5)SQL玩法

(5.0)不这么玩:联合查询,子查询,触发器,自定义函数,事务

(5.1)IN查询:分发MR or 拼装成不同SQL语句

(5.2)非partition key查询:定位一个库 or 分发MR

(5.3)夸库分页

(5.3.1)修改sql语句,服务内排序

(5.3.2)引入特殊id,减少返回数量

(5.3.3)业务优化,允许模糊查询

(5.3.4)查询改写,二段查询

至此,58同城数据实战(上) + 58同城数据库设计(下)的内容全部完成。

【完】

回复【mongo】,阅读《一分钟了解mongoDB》

回复【leveldb】,阅读《Google-levelDB简介》

回复【join】,阅读《两幅图秒懂sql中的join》

回复【mysql】,阅读《mysql数据库中间件》

回复【赶集】,阅读《赶集mysql军规》

回复【同城】,阅读《58同城mysql实战(上)

回复【数据库】,阅读《58同城数据库架构设计思路(下)》

小游戏:

回大于10的整数,返回随机好文(试试看哟,猜猜怎么实现的?)

如果觉得有收获,各位兄弟帮忙转发一下哈。

你可能感兴趣的:(58同城数据库架构设计思路(下))