import torch.nn as nn import torch import os import torch.nn.functional as F class Model(nn.Module): def __init__(self,): super(Model, self).__init__() self.l = nn.Linear(2,1,bias=False) self.b = nn.BatchNorm1d(1) self.l.weight.data.fill_(1.0) # self.l.bias.data.fill_(0.0) self.b.weight.data.fill_(1.0) self.b.bias.data.fill_(0.0) def forward(self, x): l = self.l(x) print('before bn') print(f'running_mean={self.b.running_mean}') print(f'running_var={self.b.running_var}') o = self.b(l) print('after bn') print(f'running_mean={self.b.running_mean}') print(f'running_var={self.b.running_var}') return o, l def comput_mean_var(l, mean, var, momentum=0.9): mean = mean*momentum + torch.mean(l)*(1-momentum) var = var*momentum + vv(l)*(1-momentum) print(f'mean={mean},var={var}') return mean, var def vv(l): m = l.mean() v = torch.mean((l-m)**2) return v os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' model = Model() model = nn.DataParallel(model, device_ids=[0,1]).cuda() data0 = torch.Tensor([[1,1],[2,2]]).cuda() data1 = torch.Tensor([[3,3],[4,4]]).cuda() data00 = torch.cat([data0, data0], 0) data01 = torch.cat([data0, data1], 0) model.train() o,l = model(data01) m1, v1 = comput_mean_var(l[:2],0.0,1.0) m2, v2 = comput_mean_var(l[2:],0.0,1.0) o,l = model(data01) m1, v1 = comput_mean_var(l[:2],0.3,1.1) m2, v2 = comput_mean_var(l[2:],0.3,1.1) print((l[:2]-l[:2].mean())/vv(l[:2]).sqrt_(), (l[2:]-l[2:].mean())/vv(l[2:]).sqrt_()) print(o) print((l-l.mean())/vv(l).sqrt_()) model.eval() o,l = model(data01) print(o) print((l-model.module.b.running_mean)/model.module.b.running_var.sqrt_())
before bn
running_mean=tensor([0.], device='cuda:0')
running_var=tensor([1.], device='cuda:0')
before bn
running_mean=tensor([0.], device='cuda:1')
running_var=tensor([1.], device='cuda:1')
after bn
running_mean=tensor([0.3000], device='cuda:0')
running_var=tensor([1.1000], device='cuda:0')
after bn
running_mean=tensor([0.7000], device='cuda:1')
running_var=tensor([1.1000], device='cuda:1')
mean=0.30000001192092896,var=1.0
mean=0.699999988079071,var=1.0
before bn
before bn
running_mean=tensor([0.3000], device='cuda:1')
running_mean=tensor([0.3000], device='cuda:0')
running_var=tensor([1.1000], device='cuda:1')
running_var=tensor([1.1000], device='cuda:0')
after bn
after bn
running_mean=tensor([0.9700], device='cuda:1')running_mean=tensor([0.5700], device='cuda:0')
running_var=tensor([1.1900], device='cuda:1')
running_var=tensor([1.1900], device='cuda:0')
mean=0.5700000524520874,var=1.090000033378601
mean=0.9700000286102295,var=1.090000033378601
tensor([[-1.],
[ 1.]], device='cuda:0', grad_fn=
[ 1.]], device='cuda:0', grad_fn=
tensor([[-1.0000],
[ 1.0000],
[-1.0000],
[ 1.0000]], device='cuda:0', grad_fn=
tensor([[-1.3416],
[-0.4472],
[ 0.4472],
[ 1.3416]], device='cuda:0', grad_fn=
before bn
before bn
running_mean=tensor([0.5700], device='cuda:0')running_mean=tensor([0.5700], device='cuda:1')
running_var=tensor([1.1900], device='cuda:1')
running_var=tensor([1.1900], device='cuda:0')
after bn
after bn
running_mean=tensor([0.5700], device='cuda:1')
running_mean=tensor([0.5700], device='cuda:0')
running_var=tensor([1.1900], device='cuda:1')
running_var=tensor([1.1900], device='cuda:0')
tensor([[1.3109],
[3.1443],
[4.9777],
[6.8110]], device='cuda:0', grad_fn=
tensor([[1.3109],
[3.1443],
[4.9777],
[6.8111]], device='cuda:0', grad_fn=