- LeetCode - 216 组合总和 III
程序员阿甘
华为OD算法刷题笔记算法JavaScriptleetcode
目录题目来源题目描述示例提示题目解析算法源码题目来源216.组合总和III-力扣(LeetCode)题目描述找出所有相加之和为n的k个数的组合,且满足下列条件:只使用数字1到9每个数字最多使用一次返回所有可能的有效组合的列表。该列表不能包含相同的组合两次,组合可以以任何顺序返回。示例输入:k=3,n=7输出:[[1,2,4]]解释:1+2+4=7没有其他符合的组合了。输入:k=3,n=9输出:[[
- 力扣-回溯法技巧总结
LoaryBetter
算法力扣
力扣回溯法技巧总结排列/组合/子集问题的三种形式在代码上的区别。由于子集问题和组合问题本质上是一样的,无非就是basecase有一些区别,所以把这两个问题放在一起看。形式一、元素无重不可复选,即nums中的元素都是唯一的,每个元素最多只能被使用一次,backtrack核心代码如下:/*组合/子集问题回溯算法框架*/voidbacktrack(int[]nums,intstart){//回溯算法标准
- OpenCV计算摄影学(2)图像去噪函数denoise_TVL1()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述原始-对偶算法是用于解决特定类型变分问题(即,寻找一个函数以最小化某个泛函)的算法。特别地,图像去噪可以被视为一种变分问题,因此可以使用原始-对偶算法来进行去噪,这正是这里实现的内容。需要注意的是,此实现取自2013年7月的一篇博客文章[194],该文章还包含了(
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- LeetCode 1206.设计跳表:算法详解
Tisfy
算法讲解题解#力扣LeetCode算法leetcode职场和发展
【LetMeFly】1206.设计跳表:算法详解力扣题目链接:https://leetcode.cn/problems/design-skiplist/不使用任何库函数,设计一个跳表。跳表是在O(log(n))时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。例如,一个跳表包含[30,40,50,60,70,90
- 算法解析之去重逻辑
算法去重
前言:在之前做题中经常被去重问题困扰,其中最常见的去重思想就是使用集合本身的特性进行去重,比如使用set集合或者map集合进行去重,防止相同元素的重复加入,但是在有些问题时,需要去重的不仅仅是元素,可能是一整个数组或者其他集合,这个时候如果进行一一比较,可能就比较繁琐,需要通过代码逻辑来实现避免重复对象的插入。这里有道题可以很好的理解去重的逻辑,给大家展示一下。leetcode之三数之和注意:本题
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- AI 在未来相机领域的应用前景如何?
程序员Android
人工智能数码相机智能电视
和你一起终身学习,这里是程序员Android人工智能(AI)在手机相机领域的应用已成为近年来技术创新的核心驱动力之一。随着计算摄影、深度学习算法和硬件加速技术的进步,AI正在重新定义手机摄影的可能性,并为未来带来更多颠覆性潜力。以下是AI在手机相机中的关键潜力方向及具体应用场景:经典好文推荐,通过阅读本文,您将收获以下知识点:1.计算摄影的深度进化多帧合成与超分辨率:AI通过分析多张连续拍摄的帧(
- 探讨组合加密算法在IM中的应用
即时通讯im网络编程
1、前言本文深入分析了即时通信(IM)系统中所面临的各种安全问题,综合利用对称加密算法(DES算法)、公开密钥算法(RSA算法)和Hash算法(MD5)的优点,探讨组合加密算法在即时通信中的应用。2、IM安全系列文章本文是IM通讯安全知识系列文章中的第2篇,总目录如下:《即时通讯安全篇(一):正确地理解和使用Android端加密算法》《即时通讯安全篇(二):探讨组合加密算法在IM中的应用》(本文
- Java 算法和数据结构 答案整理,最新面试题
扫地僧009
互联网大厂面试题java算法数据结构
Java中如何使用动态规划求解背包问题?1、定义子问题:首先确定动态规划状态,通常以物品数量和背包容量为变量定义子问题,例如dp[i][j]表示前i件物品放入容量为j的背包所能获得的最大价值。2、确定状态转移方程:基于是否选择当前物品,将问题分为两个子问题,即dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]),表示选择当前物品和不选择当前物
- 数据结构->二叉树初阶学习心得
一步一码-农
数据结构
二叉树二叉树节点定义structBinTreeNode{TreeNodeTypeval;BinTreeNode*left;BinTreeNode*right;}二叉树涉及算法思想递归递归要点:这个递归函数的功能是什么,怎样调用这个函数,即设计好递归函数的返回值和参数列表什么时候应该结束这个递归,它的边界条件(出口)是什么?在非边界情况时,怎样从第n层转变成第n+1层(递推公式)注:递归思想最重要的
- 具身智能(Embodied Intelligence)
ZhangJiQun&MXP
教学人工智能深度学习算法
目录具身智能(EmbodiedIntelligence)简单理解举例说明具身智能(EmbodiedIntelligence)是人工智能领域的一个子领域,它强调智能系统不仅仅依赖于算法和数据处理,还必须具备一个物理实体(embodiment),通过与环境的直接互动来获取信息、学习、适应并采取行动。以下是对具身智能的简单理解和举例说明:简单理解具身智能的核心在于“具身”二字,即智能系统需要有一个物理形
- 加密狗到底是什么?可以复制吗?
加密狗定制分析赋值
安全同态加密同态加密密码学密码学
加密狗(也称为硬件加密锁或软件保护锁)是一种用于软件版权保护的硬件设备,通常包含加密算法和密钥。其设计目的是防止未经授权的复制和使用。加密狗是否可以复制?1.**合法复制**:在获得授权的情况下,部分加密狗可以通过官方工具进行复制,但这需要合法的许可和授权。2.**非法复制**:未经授权的复制通常是非法的,可能涉及破解加密算法或克隆硬件,这些行为违反法律和软件许可协议。加密狗的防护措施-**加密算
- Gossip 协议
disgare
分布式分布式
Gossip协议协议介绍协议流程缺点Gossip算法是一种在分布式系统中广泛使用的通信协议,主要用于信息传播和状态同步。Gossip算法通过节点之间随机的、周期性的信息交换,实现信息的高效传播和系统的最终一致性之前以为Gossip是分布式一致性算法,后来了解到不是,它是通信协议,因此将该内容从之前的博客中拆出来了协议介绍Gossip协议如其名,在办公室,只要一个人八卦一下,在有限的时间内所有的人都
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- 零基础学习机器学习分类模型
可喜~可乐
机器学习机器学习学习分类人工智能数据挖掘
下面将带你通过一个简单的机器学习项目,使用Python实现一个常见的分类问题。我们将使用著名的Iris数据集,来构建一个机器学习模型,进行花卉品种的分类。整个过程会包含:原理介绍:机器学习的基本概念。数据加载和预处理:如何加载数据并进行必要的处理。模型训练和评估:使用经典的分类算法——逻辑回归。代码解释:逐步分析代码实现。拓展内容:如何优化和扩展该项目。1.原理介绍1.1机器学习基本概念机器学习(
- JVM之垃圾回收和调优思路
星星都没我亮
Java虚拟机jvm
文章目录GC的基础知识1.什么是垃圾2.如何定位(找到)垃圾3.常见的垃圾回收算法4.JVM内存分代模型(用于分代垃圾回收算法)5.常见的垃圾回收器常见垃圾回收器组合参数设定:(1.8)JVM调优第一步,了解JVM常用命令行参数PSGC日志详解调优前的基础概念:什么是调优?调优,从规划开始优化环境解决JVM运行中的问题一个案例理解常用工具jconsole远程连接jvisualvm远程连接jprof
- 训练神经网络出现nan
崧小果
AI学习记录神经网络深度学习机器学习
在理解和修改QARV的代码时,出现了训练会因为nan而终止的问题,因此学习记录。参考资料Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因_pytorchnan-CSDN博客文章浏览阅读5.6w次,点赞135次,收藏489次。常见原因-1一般来说,出现NaN有以下几种情况:相信很多人都遇到过训练一个deepmodel
- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- FastSAM:高效图像分割算法详解与实战
阿qi 爱喝拿铁
本文还有配套的精品资源,点击获取简介:图像分割在图像处理领域中起着至关重要的作用,而FastSAM作为一种高效的图像分割算法,结合了像素的局部特征与全局信息,以自适应聚类方式实现了快速且精确的像素级别分割。其采用基于密度的空间聚类方法处理噪声和不规则形状,自适应策略调整聚类参数以增强泛化能力,并优化计算流程实现并行化处理以提升运行速度。FastSAM算法在医疗、自动驾驶等多个领域具有广泛应用前景。
- Opencv之图像SIFT 特征检测与Harris角点检测
是十一月末
opencvopencv计算机视觉人工智能python特征检测
图像SIFT特征检测与Harris角点检测目录图像SIFT特征检测与Harris角点检测1SIFT特征检测1.1概念1.2主要步骤1.3优缺点1.4函数及参数2Harris角点检测2.1概念2.2**算法思想**2.3特点2.4函数及参数3角点、特征检测3.1焦点、特征检测代码及结果1SIFT特征检测1.1概念SIFT(尺度不变特征变换)是一种用于图像处理中检测和描述图像中局部结构的算法。它是由D
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- 算法-图-查找路径
程序员南飞
算法java数据结构职场和发展leetcode
力扣题目:1971.寻找图中是否存在路径-力扣(LeetCode)有一个具有n个顶点的双向图,其中每个顶点标记从0到n-1(包含0和n-1)。图中的边用一个二维整数数组edges表示,其中edges[i]=[ui,vi]表示顶点ui和顶点vi之间的双向边。每个顶点对由最多一条边连接,并且没有顶点存在与自身相连的边。请你确定是否存在从顶点source开始,到顶点destination结束的有效路径。
- 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
写代码的中青年
3天入门机器学习seleniumbeautifulsoup爬虫pythonxpath正则表达式
专栏介绍1.专栏面向零基础或基础较差的机器学习入门的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。3.需要强调的是,专栏仅介绍主流、初阶知识,每一技术模块都是AI研究的细分领域,同更多技术有所交叠,此处不进行讨论和分享。数据采集技术:selenium/正则匹配/xpa
- BCPD++(非刚性配准) 算法原理详解
点云SLAM
点云数据处理技术算法BCPD++非刚性拼接点云数据处理贝叶斯模型
BCPD++算法原理详解一、算法概述BCPD++(BayesianCoherentPointDrift++)是BCPD(BayesianCoherentPointDrift)的增强版本,专为非刚性点云配准设计。它基于贝叶斯概率框架,结合变分推断与高效优化策略,显著提升了配准精度、鲁棒性与计算效率。BCPD++的核心创新在于:分层贝叶斯模型:自适应学习超参数,减少人工调参需求。变分贝叶斯推断:替代传
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- CPD(Coherent Point Drift)非刚性点云配准算法
点云SLAM
点云数据处理技术算法概率论机器学习非刚性配准CPD配准算法EM算法非刚性拼接
CPD(CoherentPointDrift)非刚性点云配准算法详解一、算法概述CPD(CoherentPointDrift)是一种基于概率模型的非刚性点云配准方法,由AndriyMyronenko等人在2009年提出。它通过将点云配准问题转化为概率密度估计问题,结合高斯混合模型(GMM)与正则化形变场,能够有效处理复杂形变(如人体运动、器官形变)的点云对齐任务。核心特点:非刚性对齐:支持大范围、
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- java开发工程师面试技巧
酷爱码
经验分享java面试开发语言
Java开发工程师面试是一个常见的技术岗位面试,以下是一些面试技巧和建议:熟悉Java基础知识:在面试中,会经常被问到Java基础知识,包括面向对象编程、集合框架、异常处理、多线程等内容。要确保对这些知识点有扎实的掌握。练习编程题目:在面试中,通常会有编程题目要求,因此建议提前练习一些常见的编程题目,例如算法和数据结构题目。深入了解项目经历:准备好详细了解自己之前的项目经历,包括项目的背景、自己的
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>