一篇文章交你如何使用IDEA开发Spark SQL---小编给你安排的明明白白的

前言
大家好,我是DJ丶小哪吒,我又来跟你们分享知识了。对软件开发有着浓厚的兴趣。喜欢与人分享知识。做博客的目的就是为了能与 他 人知识共享。由于水平有限。博客中难免会有一些错误。如有 纰漏 之处,欢迎大家在留言区指正。小编也会及时改正。

DJ丶小哪吒又来与各位分享知识了。今天我们不飙车,今天就静静的坐下来,我们来聊一聊关于sparkSQL。准备好茶水,听老朽与你娓娓道来。
一篇文章交你如何使用IDEA开发Spark SQL---小编给你安排的明明白白的_第1张图片

进入正题 ↓↓↓

文章目录

    • 1、使用IDEA开发Spark SQL
        • 1.1、指定列名添加Schema
        • 1.2、通过StructType指定Schema
        • 1.3、反射推断Schema--掌握
        • 1.4、花式查询
    • 1.5、 相互转化
        • 1.6、Spark SQL完成WordCount(案例)
            • 1.6.1、SQL风格
            • 1.6.2、DQL风格

1、使用IDEA开发Spark SQL

Spark会根据文件信息尝试着去推断DataFrame/DataSet的Schema,当然我们也可以手动指定,手动指定的方式有以下几种:

  • 第1种:指定列名添加Schema
  • 第2种:通过StructType指定Schema
  • 第3种:编写样例类,利用反射机制推断Schema

1.1、指定列名添加Schema

package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}


object CreateDFDS {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("D:\\data\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val rowRDD: RDD[(Int, String, Int)] = linesRDD.map(line =>(line(0).toInt,line(1),line(2).toInt))
    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    import spark.implicits._
    val personDF: DataFrame = rowRDD.toDF("id","name","age")
    personDF.show(10)
    personDF.printSchema()
    sc.stop()
    spark.stop()
  }
}

1.2、通过StructType指定Schema

package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Row, SparkSession}


object CreateDFDS2 {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("D:\\data\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val rowRDD: RDD[Row] = linesRDD.map(line =>Row(line(0).toInt,line(1),line(2).toInt))
    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    //import spark.implicits._
    val schema: StructType = StructType(Seq(
      StructField("id", IntegerType, true),//允许为空
      StructField("name", StringType, true),
      StructField("age", IntegerType, true))
    )
    val personDF: DataFrame = spark.createDataFrame(rowRDD,schema)
    personDF.show(10)
    personDF.printSchema()
    sc.stop()
    spark.stop()
  }
}

1.3、反射推断Schema–掌握

package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}


object CreateDFDS3 {
case class Person(id:Int,name:String,age:Int)
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL")
.getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("D:\\data\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val rowRDD: RDD[Person] = linesRDD.map(line =>Person(line(0).toInt,line(1),line(2).toInt))
    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    import spark.implicits._
    //注意:上面的rowRDD的泛型是Person,里面包含了Schema信息
    //所以SparkSQL可以通过反射自动获取到并添加给DF
    val personDF: DataFrame = rowRDD.toDF
    personDF.show(10)
    personDF.printSchema()
    sc.stop()
    spark.stop()
  }
}

1.4、花式查询

package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}


object QueryDemo {
case class Person(id:Int,name:String,age:Int)
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL")
.getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("D:\\data\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val rowRDD: RDD[Person] = linesRDD.map(line =>Person(line(0).toInt,line(1),line(2).toInt))
    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    import spark.implicits._
    //注意:上面的rowRDD的泛型是Person,里面包含了Schema信息
    //所以SparkSQL可以通过反射自动获取到并添加给DF
    val personDF: DataFrame = rowRDD.toDF
    personDF.show(10)
    personDF.printSchema()
    //=======================SQL方式查询=======================
    //0.注册表
    personDF.createOrReplaceTempView("t_person")
    //1.查询所有数据
    spark.sql("select * from t_person").show()
    //2.查询age+1
    spark.sql("select age,age+1 from t_person").show()
    //3.查询age最大的两人
    spark.sql("select name,age from t_person order by age desc limit 2").show()
    //4.查询各个年龄的人数
    spark.sql("select age,count(*) from t_person group by age").show()
    //5.查询年龄大于30的
    spark.sql("select * from t_person where age > 30").show()

    //=======================DSL方式查询=======================
    //1.查询所有数据
    personDF.select("name","age")
    //2.查询age+1
    personDF.select($"name",$"age" + 1)
    //3.查询age最大的两人
    personDF.sort($"age".desc).show(2)
    //4.查询各个年龄的人数
    personDF.groupBy("age").count().show()
    //5.查询年龄大于30的
    personDF.filter($"age" > 30).show()

    sc.stop()
    spark.stop()
  }
  }

1.5、 相互转化

RDD、DF、DS之间的相互转换有很多(6种),但是我们实际操作就只有2类:
1)使用RDD算子操作
2)使用DSL/SQL对表操作

package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object TransformDemo {
case class Person(id:Int,name:String,age:Int)

  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("D:\\data\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val personRDD: RDD[Person] = linesRDD.map(line =>Person(line(0).toInt,line(1),line(2).toInt))
    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    import spark.implicits._
    //注意:上面的rowRDD的泛型是Person,里面包含了Schema信息
    //所以SparkSQL可以通过反射自动获取到并添加给DF
    //=========================相互转换======================
    //1.RDD-->DF
    val personDF: DataFrame = personRDD.toDF
    //2.DF-->RDD
    val rdd: RDD[Row] = personDF.rdd
    //3.RDD-->DS
    val DS: Dataset[Person] = personRDD.toDS()
    //4.DS-->RDD
    val rdd2: RDD[Person] = DS.rdd
    //5.DF-->DS
    val DS2: Dataset[Person] = personDF.as[Person]
    //6.DS-->DF
    val DF: DataFrame = DS2.toDF()

    sc.stop()
    spark.stop()
  }
  }

1.6、Spark SQL完成WordCount(案例)

1.6.1、SQL风格
package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}


object WordCount {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileDF: DataFrame = spark.read.text("D:\\data\\words.txt")
    val fileDS: Dataset[String] = spark.read.textFile("D:\\data\\words.txt")
    //fileDF.show()
    //fileDS.show()
    //3.对每一行按照空格进行切分并压平
    //fileDF.flatMap(_.split(" ")) //注意:错误,因为DF没有泛型,不知道_是String
    import spark.implicits._
    val wordDS: Dataset[String] = fileDS.flatMap(_.split(" "))//注意:正确,因为DS有泛型,知道_是String
    //wordDS.show()
    /*
    +-----+
    |value|
    +-----+
    |hello|
    |   me|
    |hello|
    |  you|
      ...
     */
    //4.对上面的数据进行WordCount
    wordDS.createOrReplaceTempView("t_word")
    val sql =
      """
        |select value ,count(value) as count
        |from t_word
        |group by value
        |order by count desc
      """.stripMargin
    spark.sql(sql).show()

    sc.stop()
    spark.stop()
  }
}
1.6.2、DQL风格
package cn.itcast.sql

import org.apache.spark.SparkContext
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}


object WordCount2 {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    //2.读取文件
    val fileDF: DataFrame = spark.read.text("D:\\data\\words.txt")
    val fileDS: Dataset[String] = spark.read.textFile("D:\\data\\words.txt")
    //fileDF.show()
    //fileDS.show()
    //3.对每一行按照空格进行切分并压平
    //fileDF.flatMap(_.split(" ")) //注意:错误,因为DF没有泛型,不知道_是String
    import spark.implicits._
    val wordDS: Dataset[String] = fileDS.flatMap(_.split(" "))//注意:正确,因为DS有泛型,知道_是String
    //wordDS.show()
    /*
    +-----+
    |value|
    +-----+
    |hello|
    |   me|
    |hello|
    |  you|
      ...
     */
    //4.对上面的数据进行WordCount
    wordDS.groupBy("value").count().orderBy($"count".desc).show()

    sc.stop()
    spark.stop()
  }
}

好了,以上内容就到这里了。你学到了吗。欢迎路过的朋友关注小编哦。各位朋友关注点赞是小编坚持下去的动力。小编会继续为大家分享更多的知识哦~~~。

我是DJ丶小哪吒。是一名互联网行业的工具人,小编的座右铭:“我不生产代码,我只做代码的搬运工”…哈哈哈,我们下期见哦,Bye~

当你认为自己倾尽全力时,往往才是别人的起点。

你可能感兴趣的:(大数据,spark)