CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

LINK:CF321E Ciel and Gondolas

很少遇到这么有意思的题目了。虽然很套路。。

容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i,j)\)

暴力显然不太行 不过暴力枚举决策的话 可以预处理前缀和线性推出。

显然想要优化决策的话第一步就需要O(1)求出\(cost(i,j)\)

经过画图 可以发现预处理出\(g[i][j]\)表示从\((1,1)\)\((i,j)\)这个矩形中的点值和 和 \(sum_i\)表示\((1,1)\)\((i,i)\)的点值和 就可以O(1)求值了。

观察dp转移式发现这是典型的四边形不等式优化dp 套用决策单调性 复杂度\(n\cdot k\cdot logn\)

强制k段 显然可以Wqs二分来解除限制 不过这样不太能分治做了 需要采用单调队列来做。

但存在一个问题 可能有mid的时候为k-1 mid+1的时候为k+1.

关于这个问题 通过值相等的时候分段多的方法来使上面情况合法化 最终尽管可能>=k的但是仍然可以构造出等于k的情况。

如果是小数二分的话显然不必要 因为可以精确到固定的点。

所以总复杂度\(n\cdot logMx \cdot logn\)

code
//#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
    return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
    RE int x=0,f=1;RE char ch=getc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
    while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
    return x*f;
}
const int MAXN=4010,G=3;
int n,k,l,r;
ll f[MAXN];
int sum[MAXN],pre[MAXN][MAXN];
int c[MAXN][MAXN],cnt[MAXN];
struct wy{int l,r,x;}q[MAXN];
inline int cost(int i,int j)
{
	return (sum[j]-c[i-1][j]*2+sum[i-1])>>1;
}
inline int pd(int x,int y,int z)
{
	if(f[x]+cost(x+1,z)>1;
		if(pd(a.x,x,mid))r=mid;
		else l=mid+1;
	}
	return r;
}
inline void calc(int x)
{
	q[l=r=1]=(wy){1,n,0};
	rep(1,n,i)
	{
		while(lr){q[++r]=(wy){i+1,n,i};continue;}
			int w=calc(q[r],i);
			q[r].r=w-1;q[++r]=(wy){w,n,i};
		}
	}
}
int main()
{
	//freopen("1.in","r",stdin);
	get(n);get(k);
	rep(1,n,i)
	{
		rep(1,n,j)
		{
			int get(x);
			pre[i][j]=pre[i][j-1]+x;
			c[i][j]=c[i-1][j]+pre[i][j];
		}
		sum[i]=sum[i-1]+(pre[i][i]<<1);
	}
	int l=0,r=(sum[n]>>1)+1;
	while(l+1>1;
		calc(mid);
		if(cnt[n]>=k)l=mid;
		else r=mid;
	}
	calc(r);
	if(cnt[n]>=k)l=r;else calc(l);
	putl(f[n]-k*l);return 0;
}

你可能感兴趣的:(CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性)