一个很有用的图像处理工具箱

gradientMag发现了一个很有用的图像处理工具箱:http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html。

下载下来工具箱,将其解压,通过下面两行代码将此工具箱的文件放到MATLAB的可查询路径:

>>  addpath(genpath('D:\piotr_toolbox\toolbox'));
>> savepath;

这个工具箱一共包含七大部分:

  • channels Robust image features, including HOG, for fast object detection.
  • classify Fast clustering, random ferns, RBF functions, PCA, etc.
  • detector Aggregate Channel Features (ACF) object detection code.
  • filters Routines for filtering images.
  • images Routines for manipulating and displaying images.
  • matlab General Matlab functions that should have been a part of Matlab.
  • videos Routines for annotating and displaying videos.

(1)channel里的hog的使用:

注意:由于要用到部分C++程序,所以我们需要编译一下:

在MATLAB命令窗口输入:toolboxCompile;

 用到的是:

H = hog( I, binSize, nOrients, clip, crop )

 INPUTS
%  I        - [hxw] color or grayscale input image (must have type single)
%  binSize  - [8] spatial bin size
%  nOrients - [9] number of orientation bins
%  clip     - [.2] value at which to clip histogram bins
%  crop     - [0] if true crop boundaries(对边界特别处理)
%
% OUTPUTS
%  H        - [h/binSize w/binSize nOrients*4] computed hog features

调用方法:

>> I=imResample(single(imread('peppers.png')),[480 640])/255; 读取图像,统一图像大小,类型为Single

>>H=hog(I,8,9); 返回的是60*80*36的多维矩阵(考虑边界的8个像素)

 >>e=hog(I,8,9,0.2,1);返回的是58*78*36的多维矩阵(考虑边界的8个像素)

(2)channel里的hogDraw的使用:

用到的是: V = hogDraw( H, w, fhog )

作用是画出hog的示意图。

INPUTS
%  H          - [m n oBin*4] computed hog features
%  w          - [15] width for each glyph
%  fhog       - [0] if true draw features returned by fhog
%
% OUTPUTS
%  V          - [m*w n*w] visualization of hog features

调用方法:

>> V=hogDraw(e,25);
>> im(V);

(3)channel里的gradientMag的使用:

用到的是:[M,O] = gradientMag( I, channel, normRad, normConst, full )

作用是求出每个像素的梯度以及幅值。

% INPUTS
%  I          - [hxwxk] input k channel single image
%  channel    - [0] if>0 color channel to use for gradient computation
%  normRad    - [0] normalization radius (no normalization if 0)
%  normConst  - [.005] normalization constant
%  full       - [0] if true compute angles in [0,2*pi) else in [0,pi)
%
% OUTPUTS
%  M          - [hxw] gradient magnitude at each location
%  O          - [hxw] approximate gradient orientation modulo PI

调用:

>>  a=rgbConvert(imread('peppers.png'),'gray');
>> [M,O]=gradientMag(a);

(4)channel里的gradientHist的使用:

作用是求每一个patch的梯度统计。

用到的是:H = gradientHist( M, O, varargin )

% INPUTS
%  M        - [hxw] gradient magnitude at each location (see gradientMag.m)
%  O        - [hxw] gradient orientation in range defined by param flag
%  binSize  - [8] spatial bin size
%  nOrients - [9] number of orientation bins
%  softBin  - [1] set soft binning (odd: spatial=soft, >=0: orient=soft)
%  useHog   - [0] 1: compute HOG (see hog.m), 2: compute FHOG (see fhog.m)
%  clipHog  - [.2] value at which to clip hog histogram bins
%  full     - [false] if true expects angles in [0,2*pi) else in [0,pi)
%
% OUTPUTS
%  H        - [w/binSize x h/binSize x nOrients] gradient histograms

调用:

 H1=gradientHist(M,O,2,6,0);

(5)channel里的J = rgbConvert( I, colorSpace, useSingle )的使用:

作用是实现不同的图像空间的相互转换。

% INPUTS
%  I          - [hxwx3] input rgb image (uint8 or single/double in [0,1])
%  colorSpace - ['luv'] other choices include: 'gray', 'hsv', 'rgb', 'orig'
%  useSingle  - [true] determines output type (faster if useSingle)
%
% OUTPUTS
%  J          - [hxwx3] single or double output image (normalized to [0,1])

使用方法:

>>  I = imread('peppers.png');
>> J = rgbConvert( I, 'luv' );
>> J2=rgbConvert( I, 'hsv' );

(6)image里的varargout = montage2( IS, prm )的使用:

作用是显示各个通道的图像。

使用方法:

>> figure(2),montage2(J);

 

 

你可能感兴趣的:(图像处理)