TCP粘包问题

粘包问题:

一、TCP协议简介   
TCP是一个面向连接的传输层协议,虽然TCP不属于ISO制定的协议集,但由于其在商业界和工业界的成功应用,它已成为事实上的网络标准,广泛应用于各种网络主机间的通信。   
作为一个面向连接的传输层协议,TCP的目标是为用户提供可靠的端到端连接,保证信息有序无误的传输。它除了提供基本的数据传输功能外,还为保证可靠性采用了数据编号、校验和计算、数据确认等一系列措施。它对传送的每个数据字节都进行编号,并请求接收方回传确认信息(ACK)。发送方如果在规定的时间内没有收到数据确认,就重传该数据。数据编号使接收方能够处理数据的失序和重复问题。数据误码问题通过在每个传输的数据段中增加校验和予以解决,接收方在接收到数据后检查校验和,若校验和有误,则丢弃该有误码的数据段,并要求发送方重传。流量控制也是保证可靠性的一个重要措施,若无流控,可能会因接收缓冲区溢出而丢失大量数据,导致许多重传,造成网络拥塞恶性循环。TCP采用可变窗口进行流量控制,由接收方控制发送方发送的数据量。   
TCP为用户提供了高可靠性的网络传输服务,但可靠性保障措施也影响了传输效率。因此,在实际工程应用中,只有关键数据的传输才采用TCP,而普通数据的传输一般采用高效率的UDP。   
 
二、粘包问题分析与对策   
TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。   
出现粘包现象的原因是多方面的,它既可能由发送方造成,也可能由接收方造成。发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据。若连续几次发送的数据都很少,通常TCP会根据优化算法把这些数据合成一包后一次发送出去,这样接收方就收到了粘包数据。接收方引起的粘包是由于接收方用户进程不及时接收数据,从而导致粘包现象。这是因为接收方先把收到的数据放在系统接收缓冲区,用户进程从该缓冲区取数据,若下一包数据到达时前一包数据尚未被用户进程取走,则下一包数据放到系统接收缓冲区时就接到前一包数据之后,而用户进程根据预先设定的缓冲区大小从系统接收缓冲区取数据,这样就一次取到了多包数据(图1所示)。   
粘包情况有两种,一种是粘在一起的包都是完整的数据包(图1、图2所示),另一种情况是粘在一起的包有不完整的包(图3所示),此处假设用户接收缓冲区长度为m个字节。   
不是所有的粘包现象都需要处理,若传输的数据为不带结构的连续流数据(如文件传输),则不必把粘连的包分开(简称分包)。但在实际工程应用中,传输的数据一般为带结构的数据,这时就需要做分包处理。   
在处理定长结构数据的粘包问题时,分包算法比较简单;在处理不定长结构数据的粘包问题时,分包算法就比较复杂。特别是如图3所示的粘包情况,由于一包数据内容被分在了两个连续的接收包中,处理起来难度较大。实际工程应用中应尽量避免出现粘包现象。   
为了避免粘包现象,可采取以下几种措施。一是对于发送方引起的粘包现象,用户可通过编程设置来避免,TCP提供了强制数据立即传送的操作指令push,TCP软件收到该操作指令后,就立即将本段数据发送出去,而不必等待发送缓冲区满;二是对于接收方引起的粘包,则可通过优化程序设计、精简接收进程工作量、提高接收进程优先级等措施,使其及时接收数据,从而尽量避免出现粘包现象;三是由接收方控制,将一包数据按结构字段,人为控制分多次接收,然后合并,通过这种手段来避免粘包。   
以上提到的三种措施,都有其不足之处。第一种编程设置方法虽然可以避免发送方引起的粘包,但它关闭了优化算法,降低了网络发送效率,影响应用程序的性能,一般不建议使用。第二种方法只能减少出现粘包的可能性,但并不能完全避免粘包,当发送频率较高时,或由于网络突发可能使某个时间段数据包到达接收方较快,接收方还是有可能来不及接收,从而导致粘包。第三种方法虽然避免了粘包,但应用程序的效率较低,对实时应用的场合不适合。   
一种比较周全的对策是:接收方创建一预处理线程,对接收到的数据包进行预处理,将粘连的包分开。对这种方法我们进行了实验,证明是高效可行的。   
 
三、编程与实现   
1.实现框架   
实验网络通信程序采用TCP/IP协议的Socket  API编程实现。Socket是面向客户机/服务器模型的。TCP实现框架如图4所示。   
2.实验硬件环境:   
服务器:Pentium  350  微机   
客户机:Pentium  166微机   
网络平台:由10兆共享式HUB连接而成的局域网   
3.实验软件环境:   
操作系统:Windows  98   
编程语言:Visual  C++  5.0   
4.主要线程   
编程采用多线程方式,服务器端共有两个线程:发送数据线程、发送统计显示线程。客户端共有三个线程:接收数据线程、接收预处理粘包线程、接收统计显示线程。其中,发送和接收线程优先级设为THREAD_PRIORITY_TIME_CRITICAL(最高优先级),预处理线程优先级为THREAD_PRIORITY_ABOVE_NORMAL(高于普通优先级),显示线程优先级为THREAD_PRIORITY_NORMAL(普通优先级)。   
实验发送数据的数据结构如图5所示:   
5.分包算法   
针对三种不同的粘包现象,分包算法分别采取了相应的解决办法。其基本思路是首先将待处理的接收数据流(长度设为m)强行转换成预定的结构数据形式,并从中取出结构数据长度字段,即图5中的n,而后根据n计算得到第一包数据长度。   
1)若n2)若n=m,则表明数据流内容恰好是一完整结构数据,直接将其存入临时缓冲区即可。   
3)若n>m,则表明数据流内容尚不够构成一完整结构数据,需留待与下一包数据合并后再行处理。   
对分包算法具体内容及软件实现有兴趣者,可与作者联系。   
 
四、实验结果分析   
实验结果如下:   
1.在上述实验环境下,当发送方连续发送的若干包数据长度之和小于1500B时,常会出现粘包现象,接收方经预处理线程处理后能正确解开粘在一起的包。若程序中设置了“发送不延迟”:(setsockopt  (socket_name,IPPROTO_TCP,TCP_NODELAY,(char  *)  &on,sizeof  on)  ,其中on=1),则不存在粘包现象。   
2.当发送数据为每包1kB~2kB的不定长数据时,若发送间隔时间小于10ms,偶尔会出现粘包,接收方经预处理线程处理后能正确解开粘在一起的包。   
3.为测定处理粘包的时间,发送方依次循环发送长度为1.5kB、1.9kB、1.2kB、1.6kB、1.0kB数据,共计1000包。为制造粘包现象,接收线程每次接收前都等待10ms,接收缓冲区设为5000B,结果接收方收到526包数据,其中长度为5000B的有175包。经预处理线程处理可得到1000包正确数据,粘包处理总时间小于1ms。   
实验结果表明,TCP粘包现象确实存在,但可通过接收方的预处理予以解决,而且处理时间非常短(实验中1000包数据总共处理时间不到1ms),几乎不影响应用程序的正常工作。

你可能感兴趣的:(编程开发)