import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series, DataFrame
(1)单个图的绘制
创建图对象: fig = plt.figure() # 设置figsize参数可以确保图片保存到磁盘时具备一定的大小和纵横比.
创建轴对象: axis = fig.add_subplot()
plt.gcf()可以获得当前的Figure引用.但是更常用的是获取axis对象,然后调用绘图成员函数完成绘图:
axis.plot(data, linestyle='--', color='k')
matplotlib中的linestyle, color等设置与matlab基本相同.
(2)创建多图
可以用axis = fig.add_subplot(m,n,k)的方式定义增加的子图。但是更简单的方法是:
fig, axes = plt.subplots(m,n) # m行n列的多图矩阵
这句命令可以创建一个新的figure,并且axes就是一个含有已创建的subplot对象的Numpy数组,可以用调用数组元素的方式对subplot进行索引。还可以指定subplots的其他参数,例如使得子图之间具有相同的x轴或者y轴(否则matplotlib会自动缩放各子图的坐标轴界限)
(3)调整子图的间距
利用subplots_adjust函数可以调整各个子图之间的间距和图像大小。它的定义如下:subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
附上例子:
import matplotlib.pyplot as plt
import numpy as np
fig, axes = plt.subplots(2,2,sharex=True, sharey=True) # 子图为2行2列,设置子图具有相同的x轴和y轴
for i in range(2):
for j in range(2):
axes[i,j].hist(np.random.randn(500),bins=50, color='k',alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0) # 将子图之间的间距收缩到了0
设置操作 | axis内部函数 |
---|---|
设置刻度 | set_xticks([ticks_list])或者set_yticks([ticks_list]) |
设置刻度的描述文字 | set_xticklabels([ticks_label_list])或者set_yticklabels([ticks_label_list]) |
设置标题 | set_title('title_string') |
设置坐标轴文字 | set_xlabel('xlabel_string')或者set_ylabel('ylabel_string') |
设置图例 | plt.legend(loc='best') |
(4)设置刻度、标签和图例
这几个操作都需要调用axis对象的相关函数实现:
设置操作 | axis内部函数 |
---|---|
设置刻度 | set_xticks([ticks_list])或者set_yticks([ticks_list]) |
设置刻度的描述文字 | set_xticklabels([ticks_label_list])或者set_yticklabels([ticks_label_list]) |
设置标题 | set_title('title_string') |
设置坐标轴文字 | set_xlabel('xlabel_string')或者set_ylabel('ylabel_string') |
设置图例 | plt.legend(loc='best') |
(5)保存图像
用plt.savefig()可以保存图像。plt.savefig('test.png', bbox_inches='tight')
示例代码:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
fig = plt.figure(1)
ax = fig.add_subplot(1,1,1)
data_one = np.random.randn(500).cumsum()
data_two = np.random.randn(500).cumsum()
data_three = np.random.randn(500).cumsum()
time = pd.date_range('2007-01-28', periods=500, freq='D')
ax.plot(time, data_one,'r--', label='red')
ax.plot(time, data_two, 'b.', label='blue')
ax.plot(time, data_three, 'k-', drawstyle='steps-post', label='steps-post')
ticks = ax.set_xticks(['2007-01-28', '2007-10-01', '2008-03-01'])
labels = ax.set_xticklabels(['zero', 'one','two'])
ax.set_title('test of multi-linestyles and xticks')
plt.legend(loc='best')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
s=Series(np.random.randn(100), index=np.arange(0,100))
s.plot()
df=DataFrame(np.random.randn(10,4).cumsum(0), columns=['A','B','C','D'], index=np.arange(0,100,10))
df.plot()
附上代码:
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import numpy as np
comp1 = np.random.normal(0,1,size=200)
comp2 = np.random.normal(10,2,size=200)
values = Series(np.concatenate([comp1, comp2]))
data = Series(np.random.rand(16), index=list('abcdefghijklmnop'))
combined = {'comp1':comp1, 'comp2':comp2}
pd_combined = DataFrame(combined)
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
values.hist(bins=100, alpha=0.3, color='k', normed=True)
values.plot(kind='kde',style='k--')
ax2 = fig.add_subplot(2,1,2)
plt.scatter(comp1,comp2)
fig1, axes1 = plt.subplots(2,1)
data.plot(kind='bar', ax=axes1[0], color='k', alpha=0.7)
data.plot(kind='barh', ax=axes1[1], color='b', alpha=0.7)
pd_combined = DataFrame(combined)
pd.scatter_matrix(pd_combined, diagonal='kde')
pd.scatter_matrix(pd_combined, diagonal='hist')
柱状图:
图中(上)是直方图和密度图, (下)是散点图:
散布图, 对角线是数据的密度图:
散布图, 对角线是直方图: