本章将在一元函数微分学的基础上,讨论多元函数的微分法及其应用。——高等数学同济版
本节主要介绍了多元函数的基本概念。
解
lim ( x , y ) → ( 0 , 0 ) 2 − x y + 4 x y = lim ( x , y ) → ( 0 , 0 ) 4 − ( x y + 4 ) x y ( 2 + x y + 4 ) = lim ( x , y ) → ( 0 , 0 ) − 1 2 + x y + 4 = − 1 4 . \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{2-\sqrt{xy+4}}{xy}&=\lim\limits_{(x,y)\to(0,0)}\cfrac{4-(xy+4)}{xy(2+\sqrt{xy+4})}\\ &=\lim\limits_{(x,y)\to(0,0)}\cfrac{-1}{2+\sqrt{xy+4}}=-\cfrac{1}{4}. \end{aligned} (x,y)→(0,0)limxy2−xy+4=(x,y)→(0,0)limxy(2+xy+4)4−(xy+4)=(x,y)→(0,0)lim2+xy+4−1=−41.
(这道题主要利用了分子有理化的方法求解)
解
lim ( x , y ) → ( 0 , 0 ) x y 2 − e x y − 1 = lim ( x , y ) → ( 0 , 0 ) x y 1 − e x y ⋅ ( 2 − e x y + 1 ) = − 1 ⋅ 2 = − 2 \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{\sqrt{2-e^{xy}}-1}=\lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{1-e^{xy}}\cdot(\sqrt{2-e^{xy}}+1)=-1\cdot2=-2 \end{aligned} (x,y)→(0,0)lim2−exy−1xy=(x,y)→(0,0)lim1−exyxy⋅(2−exy+1)=−1⋅2=−2
(这道题主要利用了分母有理化的方法求解)
解
lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) e x 2 y 2 = lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) 2 ⋅ x 2 + y 2 e x 2 y 2 = 1 2 ⋅ 0 = 0. \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}&=\lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}\cdot\cfrac{x^2+y^2}{e^{x^2y^2}}\\ &=\cfrac{1}{2}\cdot0=0. \end{aligned} (x,y)→(0,0)lim(x2+y2)ex2y21−cos(x2+y2)=(x,y)→(0,0)lim(x2+y2)21−cos(x2+y2)⋅ex2y2x2+y2=21⋅0=0.
(本题主要利用了等价无穷小代换的方法求解,这部分内容见第一章第七节,传送门在这里)
证 因为
∣ x y x 2 + y 2 − 0 ∣ ⩽ 1 2 ( x 2 + y 2 ) x 2 + y 2 = 1 2 x 2 + y 2 . \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|\leqslant\cfrac{\cfrac{1}{2}(x^2+y^2)}{\sqrt{x^2+y^2}}=\cfrac{1}{2}\sqrt{x^2+y^2}. ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣⩽x2+y221(x2+y2)=21x2+y2.
要使 ∣ x y x 2 + y 2 − 0 ∣ < ε \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|<\varepsilon ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣<ε,只要 x 2 + y 2 < 2 ε \sqrt{x^2+y^2}<2\varepsilon x2+y2<2ε,所以 ∀ ε > 0 \forall\varepsilon>0 ∀ε>0,取 δ = 2 ε \delta=2\varepsilon δ=2ε,则当 0 < x 2 + y 2 < δ 0<\sqrt{x^2+y^2}<\delta 0<x2+y2<δ时,就有 ∣ x y x 2 + y 2 − 0 ∣ < ε \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|<\varepsilon ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣<ε成立,即 lim ( x , y ) → ( 0 , 0 ) = x y x 2 + y 2 \lim\limits_{(x,y)\to(0,0)}=\cfrac{xy}{\sqrt{x^2+y^2}} (x,y)→(0,0)lim=x2+y2xy。(这道题主要利用了定义证明)
证 设 P 0 ( x 0 , y 0 ) ∈ R 2 P_0(x_0,y_0)\in\bold{R}^2 P0(x0,y0)∈R2,因为 f ( x ) f(x) f(x)在 x 0 x_0 x0处连续,所以 ∀ ε > 0 \forall\varepsilon>0 ∀ε>0, ∃ δ > 0 \exists\delta>0 ∃δ>0,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta ∣x−x0∣<δ时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon ∣f(x)−f(x0)∣<ε。从而,当 P ( x , y ) ∈ U ( x 0 , δ ) P(x,y)\in U(x_0,\delta) P(x,y)∈U(x0,δ)时, ∣ x − x 0 ∣ ⩽ ρ ( P , P 0 ) < δ |x-x_0|\leqslant\rho(P,P_0)<\delta ∣x−x0∣⩽ρ(P,P0)<δ,因而有
∣ F ( x , y ) − F ( x 0 , y 0 ) ∣ = ∣ f ( x ) − f ( x 0 ) ∣ < ε . |F(x,y)-F(x_0,y_0)|=|f(x)-f(x_0)|<\varepsilon. ∣F(x,y)−F(x0,y0)∣=∣f(x)−f(x0)∣<ε.
即 F ( x , y ) F(x,y) F(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续。(这道题主要利用了定义证明)
本节主要介绍了偏导数的基本概念及计算方法。
本节主要介绍了全微分的基本概念及计算。
解 由于二元函数偏导数存在且连续是二元函数可微分的充分条件,二元函数可微分必定可偏导,二元函数可微分必定连续,因此选项(A)正确。(这道题主要考察对于多元函数可微、可导、连续的理解)
本节要将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形。多元复合函数的求导法则在多元函数微分学中也起着重要作用。——高等数学同济版
本节主要介绍了多元复合函数的求导法则。
本节主要介绍了在多元函数的情况下对隐函数求导的方法。
解 由方程组 { y = f ( x , t ) , F ( x , y , t ) = 0 \begin{cases}y=f(x,t),\\F(x,y,t)=0\end{cases} {y=f(x,t),F(x,y,t)=0可确定两个一元隐函数 y = y ( x ) y=y(x) y=y(x), t = t ( x ) t=t(x) t=t(x)。分别在两个方程两端对 x x x求导可得
{ d y d x = ∂ f ∂ x + ∂ f ∂ t ⋅ ∂ t ∂ x , ∂ F ∂ x + ∂ F ∂ y ⋅ ∂ y ∂ x + ∂ F ∂ t ⋅ ∂ t ∂ x = 0. \begin{cases} \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{\partial f}{\partial x}+\cfrac{\partial f}{\partial t}\cdot\cfrac{\partial t}{\partial x},\\ \cfrac{\partial F}{\partial x}+\cfrac{\partial F}{\partial y}\cdot\cfrac{\partial y}{\partial x}+\cfrac{\partial F}{\partial t}\cdot\cfrac{\partial t}{\partial x}=0. \end{cases} ⎩⎪⎪⎨⎪⎪⎧dxdy=∂x∂f+∂t∂f⋅∂x∂t,∂x∂F+∂y∂F⋅∂x∂y+∂t∂F⋅∂x∂t=0.
移项得
{ d y d x − ∂ f ∂ t ⋅ ∂ t ∂ x = ∂ f ∂ x , ∂ F ∂ y ⋅ ∂ y ∂ x + ∂ F ∂ t ⋅ ∂ t ∂ x = − ∂ F ∂ x . \begin{cases} \cfrac{\mathrm{d}y}{\mathrm{d}x}-\cfrac{\partial f}{\partial t}\cdot\cfrac{\partial t}{\partial x}=\cfrac{\partial f}{\partial x},\\ \cfrac{\partial F}{\partial y}\cdot\cfrac{\partial y}{\partial x}+\cfrac{\partial F}{\partial t}\cdot\cfrac{\partial t}{\partial x}=-\cfrac{\partial F}{\partial x}. \end{cases} ⎩⎪⎪⎨⎪⎪⎧dxdy−∂t∂f⋅∂x∂t=∂x∂f,∂y∂F⋅∂x∂y+∂t∂F⋅∂x∂t=−∂x∂F.
当 D = ∣ 1 − ∂ f ∂ t ∂ F ∂ y ∂ F ∂ t ∣ = ∂ F ∂ t + ∂ f ∂ t ⋅ ∂ F ∂ y ≠ 0 D=\begin{vmatrix}1&-\cfrac{\partial f}{\partial t}\\\cfrac{\partial F}{\partial y}&\cfrac{\partial F}{\partial t}\end{vmatrix}=\cfrac{\partial F}{\partial t}+\cfrac{\partial f}{\partial t}\cdot\cfrac{\partial F}{\partial y}\not =0 D=∣∣∣∣∣∣∣∣1∂y∂F−∂t∂f∂t∂F∣∣∣∣∣∣∣∣=∂t∂F+∂t∂f⋅∂y∂F=0时,解方程组得
d y d x = 1 D ⋅ ∣ ∂ f ∂ x − ∂ f ∂ t − ∂ F ∂ x ∂ F ∂ t ∣ = ∂ f ∂ x ∂ F ∂ t − ∂ f ∂ t ∂ F ∂ x ∂ f ∂ t ∂ F ∂ y + ∂ F ∂ t . \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{1}{D}\cdot\begin{vmatrix}\cfrac{\partial f}{\partial x}&-\cfrac{\partial f}{\partial t}\\-\cfrac{\partial F}{\partial x}&\cfrac{\partial F}{\partial t}\end{vmatrix}=\cfrac{\cfrac{\partial f}{\partial x}\cfrac{\partial F}{\partial t}-\cfrac{\partial f}{\partial t}\cfrac{\partial F}{\partial x}}{\cfrac{\partial f}{\partial t}\cfrac{\partial F}{\partial y}+\cfrac{\partial F}{\partial t}}. dxdy=D1⋅∣∣∣∣∣∣∣∂x∂f−∂x∂F−∂t∂f∂t∂F∣∣∣∣∣∣∣=∂t∂f∂y∂F+∂t∂F∂x∂f∂t∂F−∂t∂f∂x∂F.
(这道题主要利用了多元函数求导法则求解)
本节先介绍一元向量值函数及其导数,再讨论多元函数微分学的几何应用。——高等数学同济版
本节主要介绍了多元函数导数在几何上的应用。
证
lim t → t 0 [ f ( t ) × g ( t ) ] = lim t → t 0 ∣ i j k f 1 ( t ) f 2 ( t ) f 3 ( t ) g 1 ( t ) g 2 ( t ) g 3 ( t ) ∣ = lim t → t 0 ( f 2 ( t ) g 3 ( t ) − f 3 ( t ) g 2 ( t ) , f 3 ( t ) g 1 ( t ) − f 1 ( t ) g 3 ( t ) , f 1 ( t ) g 2 ( t ) − f 2 ( t ) g 1 ( t ) ) = ( lim t → t 0 [ f 2 ( t ) g 3 ( t ) − f 3 ( t ) g 2 ( t ) ] , lim t → t 0 [ f 3 ( t ) g 1 ( t ) − f 1 ( t ) g 3 ( t ) ] , lim t → t 0 [ f 1 ( t ) g 2 ( t ) − f 2 ( t ) g 1 ( t ) ] ) = ∣ i j k lim t → t 0 f 1 ( t ) lim t → t 0 f 2 ( t ) lim t → t 0 f 3 ( t ) lim t → t 0 g 1 ( t ) lim t → t 0 g 2 ( t ) lim t → t 0 g 3 ( t ) ∣ = u × v . \begin{aligned} \lim\limits_{t\to t_0}[\bm{f}(t)\times\bm{g}(t)]&=\lim\limits_{t\to t_0}\begin{vmatrix}\bm{i}&\bm{j}&\bm{k}\\f_1(t)&f_2(t)&f_3(t)\\g_1(t)&g_2(t)&g_3(t)\end{vmatrix}\\ &=\lim\limits_{t\to t_0}\left(f_2(t)g_3(t)-f_3(t)g_2(t),f_3(t)g_1(t)-f_1(t)g_3(t),f_1(t)g_2(t)-f_2(t)g_1(t)\right)\\ &=\left(\lim\limits_{t\to t_0}[f_2(t)g_3(t)-f_3(t)g_2(t)],\lim\limits_{t\to t_0}[f_3(t)g_1(t)-f_1(t)g_3(t)],\lim\limits_{t\to t_0}[f_1(t)g_2(t)-f_2(t)g_1(t)]\right)\\ &=\begin{vmatrix}\bm{i}&\bm{j}&\bm{k}\\\lim\limits_{t\to t_0}f_1(t)&\lim\limits_{t\to t_0}f_2(t)&\lim\limits_{t\to t_0}f_3(t)\\\lim\limits_{t\to t_0}g_1(t)&\lim\limits_{t\to t_0}g_2(t)&\lim\limits_{t\to t_0}g_3(t)\end{vmatrix}=\bm{u}\times\bm{v}. \end{aligned} t→t0lim[f(t)×g(t)]=t→t0lim∣∣∣∣∣∣if1(t)g1(t)jf2(t)g2(t)kf3(t)g3(t)∣∣∣∣∣∣=t→t0lim(f2(t)g3(t)−f3(t)g2(t),f3(t)g1(t)−f1(t)g3(t),f1(t)g2(t)−f2(t)g1(t))=(t→t0lim[f2(t)g3(t)−f3(t)g2(t)],t→t0lim[f3(t)g1(t)−f1(t)g3(t)],t→t0lim[f1(t)g2(t)−f2(t)g1(t)])=∣∣∣∣∣∣∣it→t0limf1(t)t→t0limg1(t)jt→t0limf2(t)t→t0limg2(t)kt→t0limf3(t)t→t0limg3(t)∣∣∣∣∣∣∣=u×v.
(这道题主要利用了行列式的方法求解)
本节主要介绍了方向导数与梯度的概念。
本节主要介绍了多元函数的极值及其求法。
解 令 ρ = x 2 + y 2 \rho=\sqrt{x^2+y^2} ρ=x2+y2,则由题设可知
f ( x , y ) = x y + ρ 4 + ο ( ρ 4 ) . f(x,y)=xy+\rho^4+\omicron(\rho^4). f(x,y)=xy+ρ4+ο(ρ4).
当 ( x , y ) → ( 0 , 0 ) (x,y)\to(0,0) (x,y)→(0,0)时, ρ = 0 \rho=0 ρ=0。
由于 f ( x , y ) f(x,y) f(x,y)在 ( 0 , 0 ) (0,0) (0,0)附近的值主要由 x y xy xy决定,而 x y xy xy在 ( 0 , 0 ) (0,0) (0,0)附近符号不定,故点 ( 0 , 0 ) (0,0) (0,0)不是 f ( x , y ) f(x,y) f(x,y)的极值点,即应选(A)。
本题也可以取两条路径 y = x y=x y=x和 y = − x y=-x y=−x来考虑。当 ∣ x ∣ |x| ∣x∣充分小时,
f ( x , x ) = x 2 + 4 x 4 + ο ( x 4 ) > 0 , f ( x , − x ) = − x 2 + 4 x 4 + ο ( x 4 ) < 0. f(x,x)=x^2+4x^4+\omicron(x^4)>0,\quad f(x,-x)=-x^2+4x^4+\omicron(x^4)<0. f(x,x)=x2+4x4+ο(x4)>0,f(x,−x)=−x2+4x4+ο(x4)<0.
故点 ( 0 , 0 ) (0,0) (0,0)不是 f ( x , y ) f(x,y) f(x,y)的极值点,即应选(A)。(这道题主要利用了极值点的判断方法求解)
本节主要介绍了二元函数的泰勒公式及应用。
解 (3)充分。
(4)充分。
(这道题主要利用了多元函数微分学中主要概念之间的联系求解)
解 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x = v ∂ u ∂ x + u ∂ v ∂ x . \cfrac{\partial z}{\partial x}=\cfrac{\partial z}{\partial u}\cdot\cfrac{\partial u}{\partial x}+\cfrac{\partial z}{\partial v}\cdot\cfrac{\partial v}{\partial x}=v\cfrac{\partial u}{\partial x}+u\cfrac{\partial v}{\partial x}. ∂x∂z=∂u∂z⋅∂x∂u+∂v∂z⋅∂x∂v=v∂x∂u+u∂x∂v.
分别在 x = e u cos v x=e^u\cos v x=eucosv, y = e u sin u y=e^u\sin u y=eusinu的两端对 x x x求偏导,得
{ e u cos v ∂ u ∂ x − e u sin v ∂ v ∂ x = 1 , e u sin v ∂ u ∂ x + e u cos v ∂ v ∂ x = 0. \begin{cases} e^u\cos v\cfrac{\partial u}{\partial x}-e^u\sin v\cfrac{\partial v}{\partial x}=1,\\ e^u\sin v\cfrac{\partial u}{\partial x}+e^u\cos v\cfrac{\partial v}{\partial x}=0. \end{cases} ⎩⎪⎨⎪⎧eucosv∂x∂u−eusinv∂x∂v=1,eusinv∂x∂u+eucosv∂x∂v=0.
由以上方程组解得
∂ u ∂ x = e − u cos v , ∂ v ∂ x = − e − u sin v . \cfrac{\partial u}{\partial x}=e^{-u}\cos v,\quad\cfrac{\partial v}{\partial x}=-e^{-u}\sin v. ∂x∂u=e−ucosv,∂x∂v=−e−usinv.
从而
∂ z ∂ x = e − u ( v cos v − u sin v ) . \cfrac{\partial z}{\partial x}=e^{-u}(v\cos v-u\sin v). ∂x∂z=e−u(vcosv−usinv).
同理
∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y = v ∂ u ∂ y + u ∂ v ∂ y . \cfrac{\partial z}{\partial y}=\cfrac{\partial z}{\partial u}\cdot\cfrac{\partial u}{\partial y}+\cfrac{\partial z}{\partial v}\cdot\cfrac{\partial v}{\partial y}=v\cfrac{\partial u}{\partial y}+u\cfrac{\partial v}{\partial y}. ∂y∂z=∂u∂z⋅∂y∂u+∂v∂z⋅∂y∂v=v∂y∂u+u∂y∂v.
分别在 x = e u cos v x=e^u\cos v x=eucosv, y = e u sin u y=e^u\sin u y=eusinu的两端对 y y y求偏导数,得
{ e u cos v ∂ u ∂ y − e u sin v ∂ v ∂ y = 0 , e u sin v ∂ u ∂ y + e u cos v ∂ v ∂ y = 1. \begin{cases} e^u\cos v\cfrac{\partial u}{\partial y}-e^u\sin v\cfrac{\partial v}{\partial y}=0,\\ e^u\sin v\cfrac{\partial u}{\partial y}+e^u\cos v\cfrac{\partial v}{\partial y}=1. \end{cases} ⎩⎪⎪⎨⎪⎪⎧eucosv∂y∂u−eusinv∂y∂v=0,eusinv∂y∂u+eucosv∂y∂v=1.
由以上方程组解得
∂ u ∂ y = e − u sin v , ∂ v ∂ x = e − u cos v . \cfrac{\partial u}{\partial y}=e^{-u}\sin v,\quad\cfrac{\partial v}{\partial x}=e^{-u}\cos v. ∂y∂u=e−usinv,∂x∂v=e−ucosv.
从而
∂ z ∂ y = e − u ( u cos v + v sin v ) . \cfrac{\partial z}{\partial y}=e^{-u}(u\cos v+v\sin v). ∂y∂z=e−u(ucosv+vsinv).
(这道题主要利用了隐函数求导的方法求解)
解 椭球面在点 M 0 M_0 M0处的沿外法线方向的一个向量为 n = ( x 0 a 2 , y 0 b 2 , z 0 c 2 ) \bm{n}=\left(\cfrac{x_0}{a^2},\cfrac{y_0}{b^2},\cfrac{z_0}{c^2}\right) n=(a2x0,b2y0,c2z0),
e n = 1 x 0 2 a 4 + y 0 2 b 4 + z 0 2 c 4 ( x 0 a 2 , y 0 b 2 , z 0 c 2 ) . ∂ z ∂ n ∣ ( x 0 , y 0 , z 0 ) = 1 x 0 2 a 4 + y 0 2 b 4 + z 0 2 c 4 ( 2 x 0 ⋅ x 0 a 2 + 2 y 0 ⋅ y 0 b 2 + 2 z 0 ⋅ z 0 c 2 ) = 2 x 0 2 a 4 + y 0 2 b 4 + z 0 2 c 4 . \bm{e_n}=\cfrac{1}{\sqrt{\cfrac{x^2_0}{a^4}+\cfrac{y^2_0}{b^4}+\cfrac{z^2_0}{c^4}}}\left(\cfrac{x_0}{a^2},\cfrac{y_0}{b^2},\cfrac{z_0}{c^2}\right).\\ \begin{aligned} \cfrac{\partial z}{\partial n}\biggm\vert_{(x_0,y_0,z_0)}&=\cfrac{1}{\sqrt{\cfrac{x^2_0}{a^4}+\cfrac{y^2_0}{b^4}+\cfrac{z^2_0}{c^4}}}\left(2x_0\cdot\cfrac{x_0}{a^2}+2y_0\cdot\cfrac{y_0}{b^2}+2z_0\cdot\cfrac{z_0}{c^2}\right)\\ &=\cfrac{2}{\sqrt{\cfrac{x^2_0}{a^4}+\cfrac{y^2_0}{b^4}+\cfrac{z^2_0}{c^4}}}. \end{aligned} en=a4x02+b4y02+c4z021(a2x0,b2y0,c2z0).∂n∂z∣∣∣∣(x0,y0,z0)=a4x02+b4y02+c4z021(2x0⋅a2x0+2y0⋅b2y0+2z0⋅c2z0)=a4x02+b4y02+c4z022.
(这道题主要利用了椭球面的外法线的公式求解)
解 设交线上的点为 M ( x , y , z ) M(x,y,z) M(x,y,z),它到 x O y xOy xOy面上距离的平方为 z 2 z^2 z2。问题就成为求函数 z 2 z^2 z2在约束条件 x 3 + y 4 + z 5 = 1 \cfrac{x}{3}+\cfrac{y}{4}+\cfrac{z}{5}=1 3x+4y+5z=1和 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1下的最小值问题。作拉格朗日函数
L = z 2 + λ ( x 3 + y 4 + z 5 − 1 ) + μ ( x 2 + y 2 − 1 ) . L=z^2+\lambda\left(\cfrac{x}{3}+\cfrac{y}{4}+\cfrac{z}{5}-1\right)+\mu(x^2+y^2-1). L=z2+λ(3x+4y+5z−1)+μ(x2+y2−1).
令
{ L x = λ 3 + 2 μ x = 0 , L y = λ 4 + 2 μ y = 0 , L z = 2 z + λ 5 = 0. \begin{cases} L_x&=\cfrac{\lambda}{3}+2\mu x=0,\\ L_y&=\cfrac{\lambda}{4}+2\mu y=0,\\ L_z&=2z+\cfrac{\lambda}{5}=0. \end{cases} ⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧LxLyLz=3λ+2μx=0,=4λ+2μy=0,=2z+5λ=0.
又由约束条件,有
x 3 + y 4 + z 5 = 1 , x 2 + y 2 = 1. \cfrac{x}{3}+\cfrac{y}{4}+\cfrac{z}{5}=1,\\ x^2+y^2=1. 3x+4y+5z=1,x2+y2=1.
解此方程组,得 x = 4 5 x=\cfrac{4}{5} x=54, y = 3 5 y=\cfrac{3}{5} y=53, z = 35 12 z=\cfrac{35}{12} z=1235。于是,得可能的极值点 M 0 ( 4 5 , 3 5 , 35 12 ) M_0\left(\cfrac{4}{5},\cfrac{3}{5},\cfrac{35}{12}\right) M0(54,53,1235)。由问题本身可知,距离最短的点必定存在,因此 M 0 M_0 M0就是所求的点。
(这道题主要利用了多约束条件的拉格朗日函数求解)
解 设切点为 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0), F ( x , y , z ) = x 2 a 2 + y 2 b 2 + z 2 c 2 − 1 F(x,y,z)=\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}-1 F(x,y,z)=a2x2+b2y2+c2z2−1,
n = ( F x , F y , F z ) = ( 2 x a 2 , 2 y b 2 , 2 z c 2 ) . \bm{n}=(F_x,F_y,F_z)=\left(\cfrac{2x}{a^2},\cfrac{2y}{b^2},\cfrac{2z}{c^2}\right). n=(Fx,Fy,Fz)=(a22x,b22y,c22z).
曲面在点处的切平面方程为
x 0 a 2 ( x − x 0 ) + y 0 b 2 ( y − y 0 ) + z 0 c 2 ( z − z 0 ) = 0. \cfrac{x_0}{a^2}(x-x_0)+\cfrac{y_0}{b^2}(y-y_0)+\cfrac{z_0}{c^2}(z-z_0)=0. a2x0(x−x0)+b2y0(y−y0)+c2z0(z−z0)=0.
即
x 0 x a 2 + y 0 y b 2 + z 0 z c 2 = 1 \cfrac{x_0x}{a^2}+\cfrac{y_0y}{b^2}+\cfrac{z_0z}{c^2}=1 a2x0x+b2y0y+c2z0z=1
于是,切平面在三个坐标轴上的截距依次为 a 2 x 0 \cfrac{a^2}{x_0} x0a2, b 2 y 0 \cfrac{b^2}{y_0} y0b2, c 2 z 0 \cfrac{c^2}{z_0} z0c2,切平面与三个坐标面所围成的四面体的体积为
V = 1 6 ⋅ a 2 b 2 c 2 x 0 y 0 z 0 . V=\cfrac{1}{6}\cdot\cfrac{a^2b^2c^2}{x_0y_0z_0}. V=61⋅x0y0z0a2b2c2.
在 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的条件下,求 V V V的最小值,即求分母 x y z xyz xyz的最大值。作拉格朗日函数
L ( x , y , z ) = x y z + λ ( x 2 a 2 + y 2 b 2 + z 2 c 2 − 1 ) . L(x,y,z)=xyz+\lambda(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}-1). L(x,y,z)=xyz+λ(a2x2+b2y2+c2z2−1).
令
{ L x = y z + 2 λ x a 2 = 0 , ( 1 ) L y = x z + 2 λ y b 2 = 0 , ( 2 ) L z = x y + 2 λ z c 2 = 0. ( 3 ) \begin{cases} L_x=yz+\cfrac{2\lambda x}{a^2}=0,&\qquad(1)\\ L_y=xz+\cfrac{2\lambda y}{b^2}=0,&\qquad(2)\\ L_z=xy+\cfrac{2\lambda z}{c^2}=0.&\qquad(3) \end{cases} ⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧Lx=yz+a22λx=0,Ly=xz+b22λy=0,Lz=xy+c22λz=0.(1)(2)(3)
( 1 ) ⋅ x + ( 2 ) ⋅ y + ( 3 ) ⋅ z (1)\cdot x+(2)\cdot y+(3)\cdot z (1)⋅x+(2)⋅y+(3)⋅z,并由约束条件 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1,得
x 2 a 2 = y 2 b 2 = z 2 c 2 = 1 3 . \cfrac{x^2}{a^2}=\cfrac{y^2}{b^2}=\cfrac{z^2}{c^2}=\cfrac{1}{3}. a2x2=b2y2=c2z2=31.
从而
x = a 3 , y = b 3 , z = c 3 . x=\cfrac{a}{\sqrt{3}},\quad y=\cfrac{b}{\sqrt{3}},\quad z=\cfrac{c}{\sqrt{3}}. x=3a,y=3b,z=3c.
于是,得可能的极值点 M ( a 3 , b 3 , c 3 ) M\left(\cfrac{a}{\sqrt{3}},\cfrac{b}{\sqrt{3}},\cfrac{c}{\sqrt{3}}\right) M(3a,3b,3c)。由此问题的性质可知,所求切点为 M ( a 3 , b 3 , c 3 ) M\left(\cfrac{a}{\sqrt{3}},\cfrac{b}{\sqrt{3}},\cfrac{c}{\sqrt{3}}\right) M(3a,3b,3c),四面体的最小体积为
V m i n = 3 2 a b c . V_{min}=\cfrac{\sqrt{3}}{2}abc. Vmin=23abc.
(这道题主要利用了空间几何和多元函数的综合计算求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。