【人工智能与机器学习 】第8周作业-实验报告

单纯形法

单纯形法是一种迭代算法,其基本原理就是从线性规划问题的一个基可行解出发,通过不断变化基变量,寻找到使得目标函数取得最优解的基可行解,也可以理解为从单纯形上的一个顶点走向另一个顶点,直到在某个顶点上目标函数取得最优值为止。

单纯形法的解题步骤

1)、把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。
2)、若基本可行解不存在,即约束条件有矛盾,则问题无解。
3)、若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解
4)、按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
5)、若迭代过程中发现问题的目标函数值无界,则终止迭代。

具体代码如下

import numpy as np
def pivot(d,bn):
    l = list(d[0][:-2])
    jnum = l.index(max(l)) #转入编号
    m = []
    for i in range(bn):
        if d[i][jnum] == 0:
            m.append(0.)
        else:
            m.append(d[i][-1]/d[i][jnum])
    inum = m.index(min([x for x in m[1:] if x!=0]))  #转出下标
    s[inum-1] = jnum
    r = d[inum][jnum]
    d[inum] /= r
    for i in [x for x in range(bn) if x !=inum]:
        r = d[i][jnum]
        d[i] -= r * d[inum]        
def solve(d,bn):
    flag = True
    while flag:
        if max(list(d[0][:-1])) <= 0: #直至所有系数小于等于0
            flag = False
        else:
            pivot(d,bn)            
def printSol(d,cn):
    for i in range(cn - 1):
        if i in s:
            print("x"+str(i)+"=%.2f" % d[s.index(i)+1][-1])
        else:
            print("x"+str(i)+"=0.00")
    print("objective is %.2f"%(-d[0][-1]))
d = np.loadtxt("D:\\my.txt", dtype=np.float)
(bn,cn) = d.shape
s = list(range(cn-bn,cn-1)) #基变量列表
solve(d,bn)
printSol(d,cn)

结果如下
【人工智能与机器学习 】第8周作业-实验报告_第1张图片

拉格朗日乘子法求解极值

#拉格朗日求解线性规划最大值和最优解
#导入sympy包,用于求导,方程组求解等等
from sympy import * 
#设置变量
x1 = symbols("x1")
x2 = symbols("x2")
alpha1 = symbols("alpha1")
alpha2 = symbols("alpha2")
alpha3 = symbols("alpha3")
#构造拉格朗日等式
L = 50 *x1-100*x2 + alpha1 * (x1+ x2-300) +alpha2 *(2*x1 + x2-400)
#求导,构造KKT条件
difyL_x1 = diff(L, x1)  #对变量x1求导
difyL_x2 = diff(L, x2)  #对变量x2求导
difyL_alpha2 = diff(L, alpha2)  #对乘子alpha2求导
dualCpt =alpha1 * (x1+ x2-300)
#求解KKT等式
aa = solve([difyL_x1, difyL_x2, dualCpt,difyL_alpha2], [x1, x2,alpha1,alpha2])
#打印结果,还需验证kkt约束条件
for i in aa:
    if i[2] >= 0 and i[0]>=0 and i[1]>=0:
        if (i[0]+i[1]-300) <= 0 and (2*i[0]+i[1]-400) <= 0 and (i[0]-250)<=0:
            print(i)

结果如下
在这里插入图片描述

你可能感兴趣的:(【人工智能与机器学习 】第8周作业-实验报告)