- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 基于深度学习的动态对抗策略
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态对抗策略是为了应对不断变化的对抗环境而提出的一类方法,这些策略能够动态地调整和优化模型的防御机制,以提高深度学习模型在各种对抗攻击下的鲁棒性和安全性。这类策略结合了对抗样本生成、模型防御和自适应学习的技术,形成了一种具有持续学习和适应能力的对抗防御框架。1.动态对抗策略的核心思想动态对抗策略的核心在于能够根据当前的攻击方式和环境变化实时调整模型的防御措施,以更有效地抵御对抗样本攻
- [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
当人工智能遇上安全人工智能实体识别BiGRU威胁情报Python
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 对抗样本之FGSM原理&实战
liuyishou
目录1、FGSM原理2、pytorch实现2.1建立模型2.2FGSM模块2.3测试2.4可视化对比2.5对比样本与对抗样本1、FGSM原理论文Explainingandharnessingadversarialexamples.这篇论文由Goodfellow等人发表在ICLR2015会议上,是对抗样本生成领域的经典论文。FGSM(fastgradientsignmethod)是一种基于梯度生成对
- FGSM方法生成交通信号牌的对抗图像样本
Rnan-prince
网络安全python人工智能
背景:生成对抗样本,即扰动图像,让原本是“停车”的信号牌识别为“禁止驶入”实验准备模型:找一个训练好的,识别交通信号牌的CNN模型,灰度图像模型地址:GitHub-Daulettulegenov/TSR_CNN:Trafficsignrecognition数据:ChineseTrafficSignDatabase(CTSDB)当下最受欢迎的国内交通标志数据集之一,该数据集容纳6164个交通标志图像
- 【论文阅读】深度学习中的后门攻击综述
ADSecT吴中生
IT技术论文阅读深度学习人工智能网络安全机器学习
深度学习中的后门攻击综述1.深度学习模型三种攻击范式1.1.对抗样本攻击1.2.数据投毒攻击1.3.后门攻击2.后门攻击特点3.常用术语和标记4.常用评估指标5.攻击设置5.1.触发器5.1.1.触发器属性5.1.2.触发器类型5.1.3.攻击类型5.2.目标类别5.3.训练方式1.深度学习模型三种攻击范式后门攻击是一种隐秘而具有挑战性的网络安全威胁,它指的是攻击者利用漏洞或特殊访问权限,在系统中
- AI安全综述
captain_hwz
security人工智能安全
1、引言AI安全这个话题,通常会引伸出来图像识别领域的对抗样本攻击。下面这张把“熊猫”变“猴子”的攻击样例应该都不陌生,包括很多照片/视频过人脸的演示也很多。对抗样本的研究领域已经具备了一定的成熟性,有一系列的理论来论述对抗样本的存在必然性等特征。从另一角度,也可以看成是通过对抗样本来研究模型的运算机理。但AI应用更成熟的搜广推等领域,就很少看到相关研究。我认为其原因在于,缺乏足够的攻击场景支撑。
- 【新论文】【模型攻击】DiffAttack 针对基于扩散的对抗性净化的逃避攻击
prinTao
人工智能
DiffAttack:EvasionAttacksAgainstDiffusion-BasedAdversarialPurification作者:MintongKang;DawnSong;BoLi链接:http://arxiv.org/pdf/2311.16124v1备注:AcceptedtoNeurIPS2023摘要:基于扩散的净化防御利用扩散模型去除对抗样本的精心设计的扰动,从而实现最先进的鲁
- 物理世界中的等距3D对抗样本
凌峰的博客
3d
论文题目:Isometric3DAdversarialExamplesinthePhysicalWorld会议:NIPS2022点云:点云——表达目标空间分布和目标表面特性的海量点集合,点包含xyz坐标信息能够包含颜色等其他信息使用顶点、边和面的数据表征的三维图形的表面,顶点包含坐标信息,面片常用顶点编号来表示,同时可以附加纹理颜色等信息点云和mesh是常用的3D表示数据、获取容易(使用RGBD相
- 2022BCS——AI安全论坛
TARO_ZERO
论坛讲座人工智能安全
AI安全研究发现AI安全研究主要集中于:模型鲁棒性(对抗样本攻击)、机密性(成员推理攻击)、完整性(模型后门攻击)e.g.人脸识别身份认证协议的安全威胁:传输过程、感知器件、终端系统、宿主软件、业务代码、识别模型联邦学习:面向端侧隐私保护的分布式学习模式,每个节点只需要提供梯度,广泛应用于开放环境中,同样也存在终端节点更易被恶意控制的威胁安全问题:梯度投毒、梯度泄密自动驾驶系统:多感知模块协同的智
- 常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)
ADSecT吴中生
IT技术人工智能安全机器学习深度学习网络安全
文章目录数据投毒(DataPoisoning)后门攻击(BackdoorAttacks)对抗样本攻击(AdversarialExamples)模型窃取攻击(ModelExtractionAttacks)参考资料数据投毒(DataPoisoning)数据投毒是一种通过在训练数据中植入恶意样本或修改数据以欺骗机器学习模型的方法。这种攻击旨在使模型在未来的预测或决策中产生错误结果。攻击者可能会植入具有误
- 对抗攻击经典论文——FGSM学习笔记 EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
亦清尘
#深度学习对抗攻击机器学习神经网络算法机器学习深度学习
论文下载:ExplainingandHarnessingAdversarialExamples1摘要几种机器学习模型,包括神经网络,一致地将对抗样本误分类——通过对数据集样本添加细微而刻意的扰动形成的输入,会导致模型以较高的置信度输出错误的结果。早期尝试解释这种现象时会专注于非线性和过拟合。但我们认为,造成神经网络在面对对抗扰动时的脆弱性的主要原因正是它们的线性特性。这种解释得到了新的定量结果的支
- 使用pgd和fgsm方法进行攻击并使用map方法评估
yjjjj11
深度学习目标检测神经网络
本次实验对100张飞机图片组成的数据集,分别使用pgd攻击和fgsm攻击,达到对每张图片飞机区域的攻击,并使用getmap程序对攻击的效果进行评估。文章目录1、运行1.py程序和auto.py程序对飞机数据集的所有图片进行获取掩码操作(1)1.py程序(2)auto.py程序(3)运行后得到自动生成的掩码图像2、使用pgd对数据集生成对抗样本3、使用fgsm方法生成对抗样本4、使用map方法进行评
- 对抗样本机器学习_cleverhans_FGSM/JSMA
weixin_34400525
人工智能数据结构与算法
对抗样本机器学习_Note1_机器学习转载自:https://yq.aliyun.com/ziliao/292780机器学习方法,如SVM,神经网络等,虽然在如图像分类等问题上已经outperform人类对同类问题的处理能力,但是也有其固有的缺陷,即我们的训练集喂的都是naturalinput,因此在正常情况下处理的比较好。然而如果我们想要对ML模型进行攻击的话,可以通过一定的手段生成对抗样本(a
- [当人工智能遇上安全] 10.威胁情报实体识别 (1)基于BiLSTM-CRF的实体识别万字详解
Eastmount
当人工智能遇上安全人工智能网络安全威胁情报实体识别深度学习
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 通用对抗扰动——Universal adversarial perturbations
Jhouery
深度学习
Universaladversarialperturbations来自CVPR2017的一篇论文。引用量也上千了。https://openaccess.thecvf.com/content_cvpr_2017/html/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.html概述对抗样本,众所周知,其目的就是
- JMSA(Jacobian Saliency Map Attack)算法源码解析
Sankkl1
AI安全算法python神经网络
论文链接:https://arxiv.org/abs/1511.07528v1源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master解析FGSM、PGD等算法生成的对抗样本的扰动方向都是损失函数的梯度方向(可以参考本人以前的博客),该论文生成的对抗样本的扰动方向是目标类别标记的预测值的梯度方向,作者将这个梯度
- [论文] Feature Squeezing:Detecting Adversarial Examples in Deep Neural Networks
tizzyt95
AI安全深度学习机器学习人工智能
思路:对抗样本经过featuresqueeze处理后大部分增加的干扰会被消除或者减小,致使featuresqueeze前后的分类结果向量(distributedvector)L1距离很大,这与正常样本经过featuresqueeze后结果相反,基于这样的规律进行对抗样本的过滤。使用的攻击手段:1.L0攻击:CW0,JSMA2.L2攻击:CW23.L正无穷:FGSM、BIM、CW正无穷squeeze
- Explaining and harnessing adversarial examples
今我来思雨霏霏_JYF
对抗性攻击人工智能深度学习机器学习
Explainingandharnessingadversarialexamples----《解释和利用对抗样本》背景:早期的研究工作认为神经网络容易受到对抗样本误导是由于其非线性特征和过拟合。创新点:该论文作者认为神经网络易受对抗性扰动影响的主要原因是它的线性本质,并提出了快速梯度符号法FGSM。摘要 包括神经网络在内的一些机器学习模型始终会被对抗样本误导,这些对抗样本通过注入小但故意破坏的扰
- WXK+ 分布外鲁邦 AugMax: Adversarial Composition of Random Augmentations for Robust Training
hoix
读论文深度学习机器学习
读NIPS2021论文AugMax:AdversarialCompositionofRandomAugmentationsforRobustTraining摘要数据增强是提高鲁棒性的一个简单有效之法。diversity和hardness是数据增强的两大需要考量的分支。AugMix使用多种的增强方法来加强收敛,而对抗训练通过生成困难的对抗样本来spottheweakness。由此启示,作者提出Aug
- 对抗样本生成系列:JSMA目标扰动
小生很忙
摘要:在之前的博客中介绍了三种对抗样本的生成算法,分别是FGSM、DeepFool和UniversalPerturbation。这三种算法生成的对抗样本样本有一个共同的特点:其对抗性样例没有具体的目标,即我们无法控制目标模型对对抗性样例的分类结果。举例来说,如果我们构建了一个识别小动物的分类模型,现在我们需要对一张狗的照片生成其对抗性样例。先前的算法生成的对抗性样例只能达到让分类器分类错误的目的,
- 关于对抗样本需要知道的
小菜变大菜
什么是对抗样本AdversarialExamples(对抗样本):对输入样本故意添加一些人无法察觉的细微的干扰,导致模型以高置信度给出一个错误的输出。对抗样本与对抗学习(GAN)不同。经典例子对抗性样本的存在是因为数据维度通常过高,即使考虑所在的子区域,往往还是过高,对整个(数据分布的)空间的的手术是不可行的,在训练样本没有覆盖的区域,无论该区域示范属于数据分布所在的区域,无论模型强不强,都有出现
- 对抗攻击公开课第二弹来啦,真题演练 + 代码实战
PaperWeekly
人脸识别人工智能css计算机视觉github
精选6讲针对人脸识别的AI对抗专题课,搭配实战项目演练,完成项目作业即可获得完课奖品近年来,AI安全问题愈加受到行业关注。在今年6月的智源大会上,清华大学计算机系教授、RealAI首席科学家朱军就指出,尽管人工智能技术取得长足进步,人工智能算法的安全性仍存在严重不足,对智能技术的应用带来较大的安全隐患。对抗攻击是当前AI模型安全领域的热门研究方向之一,其主要手段是生成对抗样本,影响AI模型效果从而
- 对抗样本的基本原理
七七_af9b
姓名:张安琪学号:17021211235转载自:https://www.leiphone.com/news/201806/aLeiPZA0FbVtQI6M.html,有删节。【嵌牛导读】:对抗样本是机器学习模型的一个有趣现象,攻击者通过在源数据上增加人类难以通过感官辨识到的细微改变,但是却可以让机器学习模型接受并做出错误的分类决定。【嵌牛鼻子】:机器学习对抗样本【嵌牛提问】:对抗样本的基本原理是什
- Zero-Shot Learning by Harnessing Adversarial Samples 理论 & 代码解读
computer_vision_chen
零样本学习深度学习人工智能机器学习
《Zero-ShotLearningbyHarnessingAdversarialSamples》基于对抗样本的零样本学习该论文要解决的问题:减轻了传统图像增强技术中固有的语义失真问题。我们希望我们的实验研究将有助于理解单标签监督和语义属性监督在模型行为上的差异,并为开发更强大的语义条件视觉增强铺平道路。然而,这种方法也会对ZSL产生不利影响,因为传统的增强技术仅依赖于单一标签监督,无法保留语义信
- 碎片笔记 | 大模型攻防简报
_Meilinger_
碎片笔记笔记人工智能大模型攻防大模型攻防模型攻防
前言:与传统的AI攻防(后门攻击、对抗样本、投毒攻击等)不同,如今的大模型攻防涉及以下多个方面的内容:目录一、大模型的可信问题1.1虚假内容生成1.2隐私泄露二、大模型的安全问题2.1模型窃取攻击2.2数据窃取攻击2.3Prompt提示词攻击2.4对抗样本攻击2.5后门攻击2.6数据投毒三、基于大模型的隐蔽通信四、大模型的产权问题五、大模型的伦理问题5.1意识形态5.2偏见歧视5.3政治斗争5.4
- 【IR】什么是对抗攻击 | 视觉跟踪
ca1m4n
CV攻防目标跟踪安全
现在有机会接触一下针对深度学习神经网络的对抗攻击,并做整理如下对于CV攻防,其实去年12月组会听完就浏览过相关文章面向目标检测的对抗样本综述+后门防御,NIPS2022adversarialattackfortrackingCVPR2021|IoUAttack导读方法结果相关工作CVPR2020|CSA摘要方法结果CVPR2021|IoUAttackIoUAttack:TowardsTempora
- 深度学习入门教学——对抗攻击和防御
恣睢s
深度学习深度学习人工智能
目录一、对抗样本二、对抗攻击三、对抗防御一、对抗样本对抗样本是指对机器学习模型的输入做微小的故意扰动,导致模型输出结果出现错误的样本。深度神经网络在经过大量数据训练后,可以实现非常复杂的功能。在语音识别、图像识别、自然语言处理等任务上被广泛运用。然而,研究表明一个人类无法察觉的噪声可能让机器产生错判。例如,给出一张熊猫的图片,神经网络可以正确地将它识别出来。如果我们给这张图片加入一些噪声,生成一副
- 对抗样本在NLP模型中的运用
2cd1
对抗样本方法是可以应用到NLP中的。下面转载山竹小果的文章NLP中的对抗样本自然语言处理方面的研究在近几年取得了惊人的进步,深度神经网络模型已经取代了许多传统的方法。但是,当前提出的许多自然语言处理模型并不能够反映文本的多样特征。因此,许多研究者认为应该开辟新的研究方法,特别是利用近几年较为流行的对抗样本生成和防御的相关研究方法。使用对抗样本生成和防御的自然语言处理研究可以基本概括为以下三种:1.
- 比赛规则介绍
闭门造折
赛题背景近年来,人工智能技术在视觉识别领域有飞速的发展,但与此同时,人工智能模型的安全问题却不容乐观。通过引入对抗样本,攻击者很容易就可以通过肉眼几乎观察不到的微小扰动,使模型分类失误。本次比赛希望可以让参赛选手了解和探索Cifar10上的对抗攻击场景,通过组合对抗攻击方案,实地体验不同对抗攻击算法特点。数据说明及描述比赛采用Cifar-10数据集,我们筛选了500张图像,这些图像都是32*32大
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class