学习opencv_学习笔记二

第三章初探opencv

Opencv的基本数据类型

typedefstructCvPoint

{

intx;

inty;

#ifdef__cplusplus

CvPoint(int_x= 0, int_y= 0): x(_x), y(_y) {}

template<typename_Tp>

CvPoint(constcv::Point_<_Tp>& pt): x((int)pt.x), y((int)pt.y) {}

template<typename_Tp>

operatorcv::Point_<_Tp>() const{ returncv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); }

#endif

}

CvPoint;

包含两个变体类型 :

typedefstructCvPoint2D32f

{

floatx;

floaty;

#ifdef__cplusplus

CvPoint2D32f(float_x= 0, float_y= 0): x(_x), y(_y) {}

template<typename_Tp>

CvPoint2D32f(constcv::Point_<_Tp>& pt): x((float)pt.x), y((float)pt.y) {}

template<typename_Tp>

operatorcv::Point_<_Tp>() const{ returncv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); }

#endif

}

CvPoint2D32f;

typedefstructCvPoint3D32f

{

floatx;

floaty;

floatz;

#ifdef__cplusplus

CvPoint3D32f(float_x= 0, float_y= 0, float_z= 0): x(_x), y(_y), z(_z) {}

template<typename_Tp>

CvPoint3D32f(constcv::Point3_<_Tp>& pt): x((float)pt.x), y((float)pt.y), z((float)pt.z) {}

template<typename_Tp>

operatorcv::Point3_<_Tp>() const{ returncv::Point3_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y), cv::saturate_cast<_Tp>(z)); }

#endif

}

CvPoint3D32f;

------------------------------cvsize

typedefstructCvSize

{

intwidth;

intheight;

#ifdef__cplusplus

CvSize(intw= 0, inth= 0): width(w), height(h) {}

template<typename_Tp>

CvSize(constcv::Size_<_Tp>& sz): width(cv::saturate_cast<int>(sz.width)), height(cv::saturate_cast<int>(sz.height)) {}

template<typename_Tp>

operatorcv::Size_<_Tp>() const{ returncv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); }

#endif

}

CvSize;

变体

typedefstructCvSize2D32f

{

floatwidth;

floatheight;

#ifdef__cplusplus

CvSize2D32f(floatw= 0, floath= 0): width(w), height(h) {}

template<typename_Tp>

CvSize2D32f(constcv::Size_<_Tp>& sz): width(cv::saturate_cast<float>(sz.width)), height(cv::saturate_cast<float>(sz.height)) {}

template<typename_Tp>

operatorcv::Size_<_Tp>() const{ returncv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); }

#endif

}

CvSize2D32f;

---------------------------cvscalar val指向四个双精度浮点型数组 存放RGBA值

typedefstructCvScalar

{

doubleval[4];

#ifdef__cplusplus

CvScalar() {}

CvScalar(doubled0, doubled1= 0, doubled2= 0, doubled3= 0) { val[0] = d0; val[1] = d1; val[2] = d2; val[3] = d3; }

template<typename_Tp>

CvScalar(constcv::Scalar_<_Tp>& s) { val[0] = s.val[0]; val[1] = s.val[1]; val[2] = s.val[2]; val[3] = s.val[3]; }

template<typename_Tp>

operatorcv::Scalar_<_Tp>() const{ returncv::Scalar_<_Tp>(cv::saturate_cast<_Tp>(val[0]), cv::saturate_cast<_Tp>(val[1]), cv::saturate_cast<_Tp>(val[2]), cv::saturate_cast<_Tp>(val[3])); }

template<typename_Tp, intcn>

CvScalar(constcv::Vec<_Tp, cn>& v)

{

inti;

for( i = 0; i < (cn < 4 ? cn : 4); i++ ) val[i] = v.val[i];

for( ; i < 4; i++ ) val[i] = 0;

}

#endif

}

CvScalar;

-------------------------cvrect

typedefstructCvRect

{

intx;

inty;

intwidth;

intheight;

#ifdef__cplusplus

CvRect(int_x= 0, int_y= 0, intw= 0, inth= 0): x(_x), y(_y), width(w), height(h) {}

template<typename_Tp>

CvRect(constcv::Rect_<_Tp>& r): x(cv::saturate_cast<int>(r.x)), y(cv::saturate_cast<int>(r.y)), width(cv::saturate_cast<int>(r.width)), height(cv::saturate_cast<int>(r.height)) {}

template<typename_Tp>

operatorcv::Rect_<_Tp>() const{ returncv::Rect_<_Tp>((_Tp)x, (_Tp)y, (_Tp)width, (_Tp)height); }

#endif

}

CvRect;

矩阵和图像类型

图像操作:

缩放

单通道提取

找出特定通道的最大最小

两图像求和

对图像进行阀值操作

cvMat矩阵结构

新建一个二维矩阵的原型

/** @brief Creates a matrix header and allocates the matrix data.

The function call is equivalent to the following code:

@code

CvMat* mat = cvCreateMatHeader(rows, cols, type);

cvCreateData(mat);

@endcode

@param rows Number of rows in the matrix

@param cols Number of columns in the matrix

@param type The type of the matrix elements in the form

CV_\\C\ , where S=signed, U=unsigned, F=float. For

example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1 channel, and CV _

32SC2 means the elements are 32-bit signed and there are 2 channels.

*/

CVAPI(CvMat*) cvCreateMat( introws,//行

intcols,//列

inttype);//预定义类型

cvCreateMat由多个原函数组成:

//创建cvmat结构,不分配内存

CVAPI(CvMat*) cvCreateMatHeader( introws, intcols, inttype);

//数据的内存分配

CVAPI(void) cvCreateData( CvArr* arr);

//根据现有矩阵,创建一个新的矩阵

/** Creates an exact copy of the input matrix (except, may be, step value) */

CVAPI(CvMat*) cvCloneMat( constCvMat* mat);

//释放矩阵

CVAPI(void) cvReleaseMat( CvMat** mat);

cvMat结构体

typedefstructCvMat

{

inttype;

intstep;

/* for internal use only */

int* refcount;

inthdr_refcount;

union

{

uchar* ptr;

short* s;

int* i;

float* fl;

double* db;

} data;

#ifdef__cplusplus

union

{

introws;

intheight;

};

union

{

intcols;

intwidth;

};

#else

introws;

intcols;

#endif

#ifdef__cplusplus

CvMat() {}

CvMat(constCvMat& m) { memcpy(this, &m, sizeof(CvMat));}

CvMat(constcv::Mat& m);

#endif

}

CvMat;

矩阵数据的存取

访问矩阵的三种方法:

简单的方法

函数原型

#defineCV_MAT_ELEM( mat, elemtype, row, col )

CvMat* mat = cvCreateMat(5,5,CV_32FC1);

//从矩阵中提取一个元素

floatelement_3_2 = CV_MAT_ELEM(*mat,//矩阵

float,//元素类型

3,//行

2);//列

//同时读取数据并设置数据

CvMat* mat = cvCreateMat(5, 5, CV_32FC1);

//从矩阵中提取一个元素

floatelement_3_2 = 7.7;

*((float*)CV_MAT_ELEM_PTR(*mat,//矩阵

3,//行

2))//列

= element_3_2;

麻烦的方法

//访问普通矩阵中的方法

CVAPI(uchar*) cvPtr1D( constCvArr* arr, //矩阵指针参数

intidx0, //索引的整数值

int* typeCV_DEFAULT(NULL));//输出值的类型

CVAPI(uchar*) cvPtr2D( constCvArr* arr,

intidx0,

intidx1,

int* typeCV_DEFAULT(NULL) );

CVAPI(uchar*) cvPtr3D( constCvArr* arr,

intidx0,

intidx1,

intidx2,

int* typeCV_DEFAULT(NULL));

CVAPI(uchar*) cvPtrND( constCvArr* arr,

constint* idx, //指向整型数组的指针(索引)

int* typeCV_DEFAULT(NULL),

intcreate_nodeCV_DEFAULT(1),

unsigned* precalc_hashvalCV_DEFAULT(NULL));

只是读取数据

CVAPI(double) cvGetReal1D( constCvArr* arr, intidx0);

CVAPI(double) cvGetReal2D( constCvArr* arr, intidx0, intidx1);

CVAPI(double) cvGetReal3D( constCvArr* arr, intidx0, intidx1, intidx2);

CVAPI(double) cvGetRealND( constCvArr* arr, constint* idx);

//会很浪费空间

CVAPI(CvScalar) cvGet1D( constCvArr* arr, intidx0);

CVAPI(CvScalar) cvGet2D( constCvArr* arr, intidx0, intidx1);

CVAPI(CvScalar) cvGet3D( constCvArr* arr, intidx0, intidx1, intidx2);

CVAPI(CvScalar) cvGetND( constCvArr* arr, constint* idx);

为矩阵元素设定值

CVAPI(void) cvSetReal1D( CvArr* arr, intidx0, doublevalue);

CVAPI(void) cvSetReal2D( CvArr* arr, intidx0, intidx1, doublevalue);

CVAPI(void) cvSetReal3D( CvArr* arr, intidx0,

intidx1, intidx2, doublevalue);

CVAPI(void) cvSetRealND( CvArr* arr, constint* idx, doublevalue);

CVAPI(void) cvSet1D( CvArr* arr, intidx0, CvScalarvalue);

CVAPI(void) cvSet2D( CvArr* arr, intidx0, intidx1, CvScalarvalue);

CVAPI(void) cvSet3D( CvArr* arr, intidx0, intidx1, intidx2, CvScalarvalue);

CVAPI(void) cvSetND( CvArr* arr, constint* idx, CvScalarvalue);

处理浮点型单通道矩阵

doublecvmGet( constCvMat* mat, introw, intcol)

voidcvmSet( CvMat* mat, introw, intcol, doublevalue)

恰当的方法

矩阵的存储是按光栅扫描顺序存储

/**

累加一个三通道矩阵中的所有元素

*/

floatsum(constCvMat* mat) {

floats = 0.0f;

for(introw = 0; row < mat->rows; row++)

{

constfloat* ptr = (constfloat*)(mat->data.ptr + row*mat->step);

for(intcol = 0; col < mat->cols; col++)

{

s += *ptr++;

}

}

return(s);

}

点的数组

计算给定点的位置的计算公式

δ=(row)*Ncols*Nchannels+(col)*Nchannels+(channel)

Ncols 列数

Nchannels通道数

IplImage数据结构

_IplImage

{

intnSize; /**< sizeof(IplImage) */

intID; /**< version (=0)*/

intnChannels; /**< Most of OpenCV functions support 1,2,3 or 4 channels

通道数

*/

intalphaChannel; /**< Ignored by OpenCV */

intdepth; /**< Pixel depth in bits:

IPL_DEPTH_8U, 无符号8位整数

IPL_DEPTH_8S, 有符号8位整数

IPL_DEPTH_16S,有符号16位整数

IPL_DEPTH_32S, 有符号32位整数

IPL_DEPTH_32F 32位符点数单精度

IPL_DEPTH_64F 64位符点数单双精度

are supported. */

charcolorModel[4]; /**< Ignored by OpenCV */

charchannelSeq[4]; /**< ditto */

intdataOrder; /**< 0 - interleaved color channels, 1 - separate color channels.

cvCreateImage can only create interleaved images

取值可以是

IPL_DATA_ORDER_PIXEL将像素点不同通道的值交错排在一起

IPL_DATA_ORDER_PLANE将像素同通道值排在一起

*/

intorigin; /**< 0 - top-left origin,

1 - bottom-left origin (Windows bitmaps style).

IPL_ORIGIN_TL

IPL_ORIGIN_BL

设置坐示原点位置 ,左上角或者左下角

*/

intalign; /**< Alignment of image rows (4 or 8).

OpenCV ignores it and uses widthStep instead. */

intwidth; /**< Image width in pixels. */

intheight; /**< Image height in pixels. */

struct_IplROI*roi; /**< Image ROI. If NULL, the whole image is selected. */

struct_IplImage*maskROI; /**< Must be NULL. */

void*imageId; /**< " " */

struct_IplTileInfo*tileInfo; /**< " " */

intimageSize; /**< Image data size in bytes

(==image->height*image->widthStep

in case of interleaved data)*/

char*imageData; /**< Pointer to aligned image data.指向第一行数据的指针*/

intwidthStep; /**< Size of aligned image row in bytes.

相邻行的同列点之间的字节数

*/

intBorderMode[4]; /**< Ignored by OpenCV. */

intBorderConst[4]; /**< Ditto. */

char*imageDataOrigin; /**< Pointer to very origin of image data

(not necessarily aligned) -

needed for correct deallocation */

#ifdef__cplusplus

_IplImage() {}

_IplImage(constcv::Mat& m);

#endif

}

IplImage;

访问图像数据

#include

usingnamespacecv;

voidstaturate_sv(IplImage* img);

intmain(intargc,char** argv) {

//读入图像

IplImage* img= cvLoadImage("test.jpg");

//

staturate_sv(img);

return0;

}

/*

在色度不变的情况下,设置每个点的饱合度为255

*/

voidstaturate_sv(IplImage* img) {

for(inty = 0; y < img->height; y++)

{

//指向第y行的起始位置

uchar* ptr = (uchar*)(

img->imageData + y*img->widthStep

);

for(intx = 0; x < img->width; x++)

{

//c通道在x行的位置

ptr[3 * x + 1] = 255;

ptr[3 * x + 2] = 255;

}

}

}

ROI和widthStep的补充

可以提高计算机视觉代码的执行速度

设置和取消ORI

CVAPI(void) cvSetImageROI( IplImage* image, CvRectrect);

CVAPI(void) cvResetImageROI( IplImage* image);

使用imageROI来增加某范围的像素

/*

imageROI来增加某范围的像素

在图像roi的蓝色通道增加150级灰度的效果

*/

voidroi_add() {

//可以从控制台传入参数

IplImage* src;

//加载图像

if((src=cvLoadImage("test.jpg"))!=0) {

//初始化坐标

intx = atoi("10");

inty = atoi("10");

intwidth = atoi("50");

intheight = atoi("50");

intadd = atoi("150");

cvSetImageROI(src,cvRect(x,y,width,height));

cvAddS(src,cvScalar(add),src);

//释放roi

cvResetImageROI(src);

cvNamedWindow("Roi_Add",1);

cvShowImage("Roi_Add",src);

cvWaitKey();

}

}

如下图所示

/*

使用widthStep方法把图像的所有像素值加1

*/

CvRectinterest_rect;

voidaddByWdthStep(IplImage* interest_rect_img) {

interest_rect =CvRect(10,10,50,50);

IplImage* sub_img = cvCreateImageHeader(

cvSize(

interest_rect.width,

interest_rect.height

),

interest_rect_img->depth,

interest_rect_img->nChannels

);

sub_img->origin = interest_rect_img->origin;

sub_img->widthStep = interest_rect_img->widthStep;

sub_img->imageData = interest_rect_img->imageData +

interest_rect.y*interest_rect_img->widthStep +

interest_rect.x*interest_rect_img->nChannels;

cvAddS(sub_img,cvScalar(1),sub_img);

cvNamedWindow("WidthStep", 1);

cvShowImage("WidthStep", sub_img);

cvWaitKey();

cvReleaseImageHeader(&sub_img);

}

矩阵和图像操作

//计算两个数组差值的绝对值

/** dst(x,y,c) = abs(src1(x,y,c) - src2(x,y,c)) */

CVAPI(void) cvAbsDiff( constCvArr* src1,

constCvArr* src2,

CvArr* dst);

//计算数组和标量差值的绝对值

/** dst(x,y,c) = abs(src(x,y,c) - value(c)) */

CVAPI(void) cvAbsDiffS( constCvArr* src,

CvArr* dst,

CvScalarvalue);

//计算数组中所有元素的绝对值

#definecvAbs( src,

dst ) //计算结果写到dst

cvAbsDiffS( (src), (dst), cvScalarAll(0))

//两个数组的元素级的加运算,如果mask没有被设空,那么mask非零元素指定的dest值在函数执行后不变

/** dst(mask) = src1(mask) + src2(mask) */

CVAPI(void) cvAdd( constCvArr* src1, constCvArr* src2, CvArr* dst,

constCvArr* maskCV_DEFAULT(NULL));

//一个数据和一个标量的元素级的相加运算

/** dst(mask) = src(mask) + value */

CVAPI(void) cvAddS( constCvArr* src, CvScalarvalue, CvArr* dst,

constCvArr* maskCV_DEFAULT(NULL));

//两个数据的元素级的加权相加运算,可以用于实现alpha融合,即两幅图像融合

/** dst = src1 * alpha + src2 * beta + gamma */

CVAPI(void) cvAddWeighted( constCvArr* src1, doublealpha,

constCvArr* src2, doublebeta,

doublegamma, CvArr* dst);

/*

alpha融合

*/

voidalpha_blends() {

IplImage*src1, *src2;

if((src1=cvLoadImage("test2.jpg"))!=0&&(src2=cvLoadImage("test.jpg"))!=0)

{

intx = atoi("10");

inty = atoi("10");

intwidth = atoi("200");

intheight = atoi("200");

doublealpha = (double)atof("0.5");

doublebeta = (double)atof("0.4");

cvSetImageROI(src1, CvRect(x, y, width, height));

cvSetImageROI(src2, CvRect(0, 0, width, height));

cvAddWeighted(src1, alpha, src2, beta, 0.0, src1);

cvResetImageROI(src1);

cvNamedWindow("Alpha_blend", 1);

cvShowImage("Alpha_blend", src1);

cvWaitKey();

}

}

//两个数组进行按位与

/** dst(idx) = src1(idx) & src2(idx) */

CVAPI(void) cvAnd( constCvArr* src1, constCvArr* src2,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

/** dst(idx) = src(idx) & value */

CVAPI(void) cvAndS( constCvArr* src, CvScalarvalue,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

//计算数组中所有元素的平均值

/** Calculates mean value of array elements */

CVAPI(CvScalar) cvAvg( constCvArr* arr, constCvArr* maskCV_DEFAULT(NULL) );

//计算数组中所有元素的绝对值和标准差

/** Calculates mean and standard deviation of pixel values */

CVAPI(void) cvAvgSdv( constCvArr* arr, CvScalar* mean, CvScalar* std_dev,

constCvArr* maskCV_DEFAULT(NULL) );

//计算一组n维空间向量的协方差

/** Calculates covariation matrix for a set of vectors

@see @ref core_c_CovarFlags "flags"

*/

CVAPI(void) cvCalcCovarMatrix( constCvArr** vects, intcount,

CvArr* cov_mat, CvArr* avg, intflags);

Flags的取值:

CV_COVAR_NORMAL计算均值和协方差

CV_COVAR_SCRAMBLED快速pca scrambled协方差

CV_COVAR_USE_AVG输入均值

CV_COVAR_SCALE重新输出缩放的协方差矩阵

//进行比较操作

/** dst(idx) = src1(idx) _cmp_op_ src2(idx) 两个数组中所有元素运用设置的比较操作*/

CVAPI(void) cvCmp( constCvArr* src1,

constCvArr* src2,

CvArr* dst,

intcmp_op);

/** dst(idx) = src1(idx) _cmp_op_ value 对数组和标量运用设置的比较操作*/

CVAPI(void) cvCmpS( constCvArr* src,

doublevalue,

CvArr* dst,

intcmp_op);

Cmp_op 的取值如下:

CV_CMP_EQ(src1i==src2i)

CV_CMP_GT(src1i>src2i)

CV_CMP_GE(src1i>=src2i)

CV_CMP_LT(src1i

CV_CMP_LE(src1i<=src2i)

CV_CMP_NE(src1i!=src2i)

//用可选的缩放值转换数组元素类型

//1 将原图像的数据类型转换为目标图像的数据类型

//2 对图像数据执行线性变换

CVAPI(void) cvConvertScale( constCvArr* src,

CvArr* dst,

doublescaleCV_DEFAULT(1),

doubleshiftCV_DEFAULT(0) );

//先缩放和平移,算出绝对值,然后进行数据类型的转换

/** Performs linear transformation on every source array element,

stores absolute value of the result:

dst(x,y,c) = abs(scale*src(x,y,c)+shift).

destination array must have 8u type.

In other cases one may use cvConvertScale + cvAbsDiffS */

CVAPI(void) cvConvertScaleAbs( constCvArr* src,

CvArr* dst,// 结果数据的绝对值

doublescaleCV_DEFAULT(1),

doubleshiftCV_DEFAULT(0) );

//一个图像复制到别一个图像

CVAPI(void) cvCopy( constCvArr* src, //源图像

CvArr* dst,//目标图像

constCvArr* maskCV_DEFAULT(NULL) );

//array中非0元素的个数

/** Calculates number of non-zero pixels */

CVAPI(int) cvCountNonZero( constCvArr* arr);

//计算两个三维向量的向量积,必须为单通道数组

CVAPI(void) cvCrossProduct( constCvArr* src1,

constCvArr* src2,

CvArr* dst);//单通道,长度应精确为3

//将数组的通道从一个颜色空间转换到另一个颜色空间

/** @brief Converts input array pixels from one color space to another

@see cv::cvtColor

*/

CVAPI(void) cvCvtColor( constCvArr* src, CvArr* dst, intcode);

CV_BGR2BGRA=0,

CV_RGB2RGBA=CV_BGR2BGRA,

CV_BGRA2BGR=1,

CV_RGBA2RGB=CV_BGRA2BGR,

CV_BGR2RGBA=2,

CV_RGB2BGRA=CV_BGR2RGBA,

CV_RGBA2BGR=3,

CV_BGRA2RGB=CV_RGBA2BGR,

CV_BGR2RGB=4,

CV_RGB2BGR=CV_BGR2RGB,

CV_BGRA2RGBA=5,

CV_RGBA2BGRA=CV_BGRA2RGBA,

CV_BGR2GRAY=6,

CV_RGB2GRAY=7,

CV_GRAY2BGR=8,

CV_GRAY2RGB=CV_GRAY2BGR,

CV_GRAY2BGRA=9,

CV_GRAY2RGBA=CV_GRAY2BGRA,

CV_BGRA2GRAY=10,

CV_RGBA2GRAY=11,

CV_BGR2BGR565=12,

CV_RGB2BGR565=13,

CV_BGR5652BGR=14,

CV_BGR5652RGB=15,

CV_BGRA2BGR565=16,

CV_RGBA2BGR565=17,

CV_BGR5652BGRA=18,

CV_BGR5652RGBA=19,

CV_GRAY2BGR565=20,

CV_BGR5652GRAY=21,

CV_BGR2BGR555=22,

CV_RGB2BGR555=23,

CV_BGR5552BGR=24,

CV_BGR5552RGB=25,

CV_BGRA2BGR555=26,

CV_RGBA2BGR555=27,

CV_BGR5552BGRA=28,

CV_BGR5552RGBA=29,

CV_GRAY2BGR555=30,

CV_BGR5552GRAY=31,

CV_BGR2XYZ=32,

CV_RGB2XYZ=33,

CV_XYZ2BGR=34,

CV_XYZ2RGB=35,

CV_BGR2YCrCb=36,

CV_RGB2YCrCb=37,

CV_YCrCb2BGR=38,

CV_YCrCb2RGB=39,

CV_BGR2HSV=40,

CV_RGB2HSV=41,

CV_BGR2Lab=44,

CV_RGB2Lab=45,

CV_BayerBG2BGR=46,

CV_BayerGB2BGR=47,

CV_BayerRG2BGR=48,

CV_BayerGR2BGR=49,

CV_BayerBG2RGB=CV_BayerRG2BGR,

CV_BayerGB2RGB=CV_BayerGR2BGR,

CV_BayerRG2RGB=CV_BayerBG2BGR,

CV_BayerGR2RGB=CV_BayerGB2BGR,

CV_BGR2Luv=50,

CV_RGB2Luv=51,

CV_BGR2HLS=52,

CV_RGB2HLS=53,

CV_HSV2BGR=54,

CV_HSV2RGB=55,

CV_Lab2BGR=56,

CV_Lab2RGB=57,

CV_Luv2BGR=58,

CV_Luv2RGB=59,

CV_HLS2BGR=60,

CV_HLS2RGB=61,

CV_BayerBG2BGR_VNG=62,

CV_BayerGB2BGR_VNG=63,

CV_BayerRG2BGR_VNG=64,

CV_BayerGR2BGR_VNG=65,

CV_BayerBG2RGB_VNG=CV_BayerRG2BGR_VNG,

CV_BayerGB2RGB_VNG=CV_BayerGR2BGR_VNG,

CV_BayerRG2RGB_VNG=CV_BayerBG2BGR_VNG,

CV_BayerGR2RGB_VNG=CV_BayerGB2BGR_VNG,

CV_BGR2HSV_FULL= 66,

CV_RGB2HSV_FULL= 67,

CV_BGR2HLS_FULL= 68,

CV_RGB2HLS_FULL= 69,

CV_HSV2BGR_FULL= 70,

CV_HSV2RGB_FULL= 71,

CV_HLS2BGR_FULL= 72,

CV_HLS2RGB_FULL= 73,

CV_LBGR2Lab= 74,

CV_LRGB2Lab= 75,

CV_LBGR2Luv= 76,

CV_LRGB2Luv= 77,

CV_Lab2LBGR= 78,

CV_Lab2LRGB= 79,

CV_Luv2LBGR= 80,

CV_Luv2LRGB= 81,

CV_BGR2YUV= 82,

CV_RGB2YUV= 83,

CV_YUV2BGR= 84,

CV_YUV2RGB= 85,

CV_BayerBG2GRAY= 86,

CV_BayerGB2GRAY= 87,

CV_BayerRG2GRAY= 88,

CV_BayerGR2GRAY= 89,

//YUV 4:2:0 formats family

CV_YUV2RGB_NV12= 90,

CV_YUV2BGR_NV12= 91,

CV_YUV2RGB_NV21= 92,

CV_YUV2BGR_NV21= 93,

CV_YUV420sp2RGB= CV_YUV2RGB_NV21,

CV_YUV420sp2BGR= CV_YUV2BGR_NV21,

CV_YUV2RGBA_NV12= 94,

CV_YUV2BGRA_NV12= 95,

CV_YUV2RGBA_NV21= 96,

CV_YUV2BGRA_NV21= 97,

CV_YUV420sp2RGBA= CV_YUV2RGBA_NV21,

CV_YUV420sp2BGRA= CV_YUV2BGRA_NV21,

CV_YUV2RGB_YV12= 98,

CV_YUV2BGR_YV12= 99,

CV_YUV2RGB_IYUV= 100,

CV_YUV2BGR_IYUV= 101,

CV_YUV2RGB_I420= CV_YUV2RGB_IYUV,

CV_YUV2BGR_I420= CV_YUV2BGR_IYUV,

CV_YUV420p2RGB= CV_YUV2RGB_YV12,

CV_YUV420p2BGR= CV_YUV2BGR_YV12,

CV_YUV2RGBA_YV12= 102,

CV_YUV2BGRA_YV12= 103,

CV_YUV2RGBA_IYUV= 104,

CV_YUV2BGRA_IYUV= 105,

CV_YUV2RGBA_I420= CV_YUV2RGBA_IYUV,

CV_YUV2BGRA_I420= CV_YUV2BGRA_IYUV,

CV_YUV420p2RGBA= CV_YUV2RGBA_YV12,

CV_YUV420p2BGRA= CV_YUV2BGRA_YV12,

CV_YUV2GRAY_420= 106,

CV_YUV2GRAY_NV21= CV_YUV2GRAY_420,

CV_YUV2GRAY_NV12= CV_YUV2GRAY_420,

CV_YUV2GRAY_YV12= CV_YUV2GRAY_420,

CV_YUV2GRAY_IYUV= CV_YUV2GRAY_420,

CV_YUV2GRAY_I420= CV_YUV2GRAY_420,

CV_YUV420sp2GRAY= CV_YUV2GRAY_420,

CV_YUV420p2GRAY= CV_YUV2GRAY_420,

//YUV 4:2:2 formats family

CV_YUV2RGB_UYVY= 107,

CV_YUV2BGR_UYVY= 108,

//CV_YUV2RGB_VYUY = 109,

//CV_YUV2BGR_VYUY = 110,

CV_YUV2RGB_Y422= CV_YUV2RGB_UYVY,

CV_YUV2BGR_Y422= CV_YUV2BGR_UYVY,

CV_YUV2RGB_UYNV= CV_YUV2RGB_UYVY,

CV_YUV2BGR_UYNV= CV_YUV2BGR_UYVY,

CV_YUV2RGBA_UYVY= 111,

CV_YUV2BGRA_UYVY= 112,

//CV_YUV2RGBA_VYUY = 113,

//CV_YUV2BGRA_VYUY = 114,

CV_YUV2RGBA_Y422= CV_YUV2RGBA_UYVY,

CV_YUV2BGRA_Y422= CV_YUV2BGRA_UYVY,

CV_YUV2RGBA_UYNV= CV_YUV2RGBA_UYVY,

CV_YUV2BGRA_UYNV= CV_YUV2BGRA_UYVY,

CV_YUV2RGB_YUY2= 115,

CV_YUV2BGR_YUY2= 116,

CV_YUV2RGB_YVYU= 117,

CV_YUV2BGR_YVYU= 118,

CV_YUV2RGB_YUYV= CV_YUV2RGB_YUY2,

CV_YUV2BGR_YUYV= CV_YUV2BGR_YUY2,

CV_YUV2RGB_YUNV= CV_YUV2RGB_YUY2,

CV_YUV2BGR_YUNV= CV_YUV2BGR_YUY2,

CV_YUV2RGBA_YUY2= 119,

CV_YUV2BGRA_YUY2= 120,

CV_YUV2RGBA_YVYU= 121,

CV_YUV2BGRA_YVYU= 122,

CV_YUV2RGBA_YUYV= CV_YUV2RGBA_YUY2,

CV_YUV2BGRA_YUYV= CV_YUV2BGRA_YUY2,

CV_YUV2RGBA_YUNV= CV_YUV2RGBA_YUY2,

CV_YUV2BGRA_YUNV= CV_YUV2BGRA_YUY2,

CV_YUV2GRAY_UYVY= 123,

CV_YUV2GRAY_YUY2= 124,

//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,

CV_YUV2GRAY_Y422= CV_YUV2GRAY_UYVY,

CV_YUV2GRAY_UYNV= CV_YUV2GRAY_UYVY,

CV_YUV2GRAY_YVYU= CV_YUV2GRAY_YUY2,

CV_YUV2GRAY_YUYV= CV_YUV2GRAY_YUY2,

CV_YUV2GRAY_YUNV= CV_YUV2GRAY_YUY2,

// alpha premultiplication

CV_RGBA2mRGBA= 125,

CV_mRGBA2RGBA= 126,

CV_RGB2YUV_I420= 127,

CV_BGR2YUV_I420= 128,

CV_RGB2YUV_IYUV= CV_RGB2YUV_I420,

CV_BGR2YUV_IYUV= CV_BGR2YUV_I420,

CV_RGBA2YUV_I420= 129,

CV_BGRA2YUV_I420= 130,

CV_RGBA2YUV_IYUV= CV_RGBA2YUV_I420,

CV_BGRA2YUV_IYUV= CV_BGRA2YUV_I420,

CV_RGB2YUV_YV12= 131,

CV_BGR2YUV_YV12= 132,

CV_RGBA2YUV_YV12= 133,

CV_BGRA2YUV_YV12= 134,

// Edge-Aware Demosaicing

CV_BayerBG2BGR_EA= 135,

CV_BayerGB2BGR_EA= 136,

CV_BayerRG2BGR_EA= 137,

CV_BayerGR2BGR_EA= 138,

CV_BayerBG2RGB_EA= CV_BayerRG2BGR_EA,

CV_BayerGB2RGB_EA= CV_BayerGR2BGR_EA,

CV_BayerRG2RGB_EA= CV_BayerBG2BGR_EA,

CV_BayerGR2RGB_EA= CV_BayerGB2BGR_EA,

CV_COLORCVT_MAX= 139

/** Calculates determinant of input matrix 计算方阵的行列式*/

CVAPI(double) cvDet( constCvArr* mat);

//用另外一个数组对一个数组进行元素级的除法运算

/** element-wise division/inversion with scaling:

dst(idx) = src1(idx) * scale / src2(idx)

or dst(idx) = scale / src2(idx) if src1 == 0 */

CVAPI(void) cvDiv( constCvArr* src1,

constCvArr* src2,

CvArr* dst,

doublescaleCV_DEFAULT(1));

//计算两个向量的点积,单通道

CVAPI(double) cvDotProduct( constCvArr* src1, constCvArr* src2);

//计算方阵的特征值和特征向量

/** Finds eigen values and vectors of a symmetric matrix */

CVAPI(void) cvEigenVV( CvArr* mat, //矩阵

CvArr* evects, //顺序保存的特征向量

CvArr* evals,//特征值

doubleepsCV_DEFAULT(0),//停止参数

intlowindexCV_DEFAULT(-1),

inthighindexCV_DEFAULT(-1));

//围绕选定轴旋转

/** Mirror array data around horizontal (flip=0),

vertical (flip=1) or both(flip=-1) axises:

cvFlip(src) flips images vertically and sequences horizontally (inplace) */

CVAPI(void) cvFlip( constCvArr* src,//图像

CvArr* dstCV_DEFAULT(NULL),//

intflip_modeCV_DEFAULT(0));//为0时,只会绕x轴转

//矩阵乘法 d=a*op(A)*op(B)+b*op(C)

/** Extended matrix transform:

dst = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X^T */

CVAPI(void) cvGEMM( constCvArr* src1,

constCvArr* src2,

doublealpha,

constCvArr* src3,

doublebeta,

CvArr* dst,

inttABCCV_DEFAULT(0));//转置,可以是0 或是以下几种

#defineCV_GEMM_A_T1

#defineCV_GEMM_B_T2

#defineCV_GEMM_C_T4

//从一个数组的列中复制元素

/** @overload

@param arr Input array

@param submat Pointer to the resulting sub-array header

@param col Zero-based index of the selected column

*/

CV_INLINECvMat* cvGetCol( constCvArr* arr, //矩阵

CvMat* submat, //指向矩阵中的特定列

intcol)//指定列

{

returncvGetCols( arr, submat, col, col+ 1 );

}

//从数组相邻的多列中复制元素

CVAPI(CvMat*) cvGetCols( constCvArr* arr,

CvMat* submat,

intstart_col,//开始列

intend_col);//结束列

//复制数组中对角线上的所有元素

CVAPI(CvMat*) cvGetDiag( constCvArr* arr,

CvMat* submat,

intdiagCV_DEFAULT(0));

//返回数组的维数

CVAPI(int) cvGetDims( constCvArr* arr, int* sizesCV_DEFAULT(NULL) );

//返回一个数组的所有维的大小

CVAPI(int) cvGetDimSize( constCvArr* arr, intindex);

//从一个数组的行中复制元素

CV_INLINECvMat* cvGetRow( constCvArr* arr, CvMat* submat, introw)

{

returncvGetRows( arr, submat, row, row+ 1, 1 );

}

//从一个数组的相邻行中复制数组

CVAPI(CvMat*) cvGetRows( constCvArr* arr, CvMat* submat,

intstart_row, intend_row,

intdelta_rowCV_DEFAULT(1));

//得到二维数组的尺寸

CVAPI(CvSize) cvGetSize( constCvArr* arr);

//从一个数组的子区域复制元素

CVAPI(CvMat*) cvGetSubRect( constCvArr* arr, CvMat* submat, CvRectrect);

//检查一个数组中的元素是否在另外两个数组中的值的范转围

//检查图像中像素的灰度是否属于某一指定范围

/** dst(idx) = lower(idx) <= src(idx) < upper(idx) */

CVAPI(void) cvInRange( constCvArr* src,//图像

constCvArr* lower,//起始值

constCvArr* upper,

CvArr* dst);//如果>=lower,且

//检查一个数组的元素的值是否在另外两个标量的范围

//如果是多通道,则会分通道进行处理

/** dst(idx) = lower <= src(idx) < upper */

CVAPI(void) cvInRangeS( constCvArr* src,

CvScalarlower,

CvScalarupper,

CvArr* dst);

//求矩阵的转置

/** Inverts matrix */

CVAPI(double) cvInvert( constCvArr* src,//

CvArr* dst,//保存结果

intmethodCV_DEFAULT(CV_LU));//参数值有以下几种:

#defineCV_LU0高斯消去

#defineCV_SVD1奇异值分解

#defineCV_SVD_SYM2对称矩阵的SVD

//计算两个向量间的马式距离

/** Calculates Mahalanobis(weighted) distance */

CVAPI(double) cvMahalanobis( constCvArr* vec1,

constCvArr* vec2,

constCvArr* mat);

//两个数组中进行元素级的取最小值

/** dst(idx) = min(src1(idx),src2(idx)) */

CVAPI(void) cvMin( constCvArr* src1, constCvArr* src2, CvArr* dst);

//一个数组和一个标量中进行元素级的取最小值

/** dst(idx) = min(src(idx),value) */

CVAPI(void) cvMinS( constCvArr* src, doublevalue, CvArr* dst);

//两个数组中取最大值

/** dst(idx) = max(src1(idx),src2(idx)) */

CVAPI(void) cvMax( constCvArr* src1, constCvArr* src2, CvArr* dst);

//一个数组和一个标量中进行元素组的取最大值

/** dst(idx) = max(src(idx),value) */

CVAPI(void) cvMaxS( constCvArr* src, doublevalue, CvArr* dst);

//把几个单通道图像合并为一个多通道图像

/** Merges a set of single-channel arrays into the single multi-channel array

or inserts one particular [color] plane to the array */

CVAPI(void) cvMerge( constCvArr* src0, constCvArr* src1,

constCvArr* src2, constCvArr* src3,

CvArr* dst);

//寻找数组中的最大最小值

/** Finds global minimum, maximum and their positions */

CVAPI(void) cvMinMaxLoc( constCvArr* arr, double* min_val, double* max_val,

CvPoint* min_locCV_DEFAULT(NULL),

CvPoint* max_locCV_DEFAULT(NULL),

constCvArr* maskCV_DEFAULT(NULL) );

//计算两个数组,元素级的乘积

/** dst(idx) = src1(idx) * src2(idx) * scale

(scaled element-wise multiplication of 2 arrays) */

CVAPI(void) cvMul( constCvArr* src1, constCvArr* src2,

CvArr* dst, doublescaleCV_DEFAULT(1) );

//对数组中的元素按位取反

/** dst(idx) = ~src(idx) */

CVAPI(void) cvNot( constCvArr* src, CvArr* dst);

//计算两个数组的正态相关性

/** Finds norm, difference norm or relative difference norm for an array (or two arrays)

@see ref core_c_NormFlags "flags"

*/

CVAPI(double) cvNorm( constCvArr* arr1, constCvArr* arr2CV_DEFAULT(NULL),

intnorm_typeCV_DEFAULT(CV_L2),

constCvArr* maskCV_DEFAULT(NULL) );

//将数组中元素进行规一化

/** @see ref core_c_NormFlags "flags" */

CVAPI(void) cvNormalize( constCvArr* src, CvArr* dst,

doubleaCV_DEFAULT(1.), doublebCV_DEFAULT(0.),

intnorm_typeCV_DEFAULT(CV_L2),

constCvArr* maskCV_DEFAULT(NULL) );

Norm_type的类型

#defineCV_C1

#defineCV_L12

#defineCV_L24

#defineCV_MINMAX32

//两个数组按位或

/** dst(idx) = src1(idx) | src2(idx) */

CVAPI(void) cvOr( constCvArr* src1, constCvArr* src2,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

//数组与标量之间按位或

/** dst(idx) = src(idx) | value */

CVAPI(void) cvOrS( constCvArr* src, CvScalarvalue,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

//通过给定操作符将二维数组约简为向量

/** @see @ref core_c_ReduceFlags "flags" */

CVAPI(void) cvReduce( constCvArr* src, CvArr* dst, intdimCV_DEFAULT(-1),

intopCV_DEFAULT(CV_REDUCE_SUM) );

//以平铺的方式进行数组复制

/** Repeats source 2d array several times in both horizontal and

vertical direction to fill destination array */

CVAPI(void) cvRepeat( constCvArr* src, CvArr* dst);

CVAPI(void) cvConvertScale( constCvArr* src, CvArr* dst,

doublescaleCV_DEFAULT(1),

doubleshiftCV_DEFAULT(0) );

//用给定值初始化数组

CVAPI(void) cvSet( CvArr* arr, CvScalarvalue,

constCvArr* maskCV_DEFAULT(NULL) );

//所有元素初始化为0

CVAPI(void) cvSetZero( CvArr* arr);

#definecvZerocvSetZero

//将数组对角线上的设置为1,其他为0

/** Makes an identity matrix (mat_ij = i == j) */

CVAPI(void) cvSetIdentity( CvArr* mat, CvScalarvalueCV_DEFAULT(cvRealScalar(1)) );

//求出线性方程的解

/** Solves linear system (src1)*(dst) = (src2)

(returns 0 if src1 is a singular and CV_LU method is used) */

CVAPI(int) cvSolve( constCvArr* src1, constCvArr* src2, CvArr* dst,

intmethodCV_DEFAULT(CV_LU));

//将多通道数组分解成为多个单通道数组

/** Splits a multi-channel array into the set of single-channel arrays or

extracts particular [color] plane */

CVAPI(void) cvSplit( constCvArr* src, CvArr* dst0, CvArr* dst1,

CvArr* dst2, CvArr* dst3);

//两个数组元素级相减

/** dst(mask) = src1(mask) - src2(mask) */

CVAPI(void) cvSub( constCvArr* src1, constCvArr* src2, CvArr* dst,

constCvArr* maskCV_DEFAULT(NULL));

//元素级的从数组减去标量

/** dst(mask) = src(mask) - value = src(mask) + (-value) */

CV_INLINEvoidcvSubS( constCvArr* src, CvScalarvalue, CvArr* dst,

constCvArr* maskCV_DEFAULT(NULL))

{

cvAddS( src, cvScalar( -value.val[0], -value.val[1], -value.val[2], -value.val[3]),

dst, mask);

}

//从标量中减去数组

/** dst(mask) = value - src(mask) */

CVAPI(void) cvSubRS( constCvArr* src, CvScalarvalue, CvArr* dst,

constCvArr* maskCV_DEFAULT(NULL));

//元素级求和

/** Finds sum of array elements */

CVAPI(CvScalar) cvSum( constCvArr* arr);

//二维矩阵的奇异值分解

/** Performs Singular Value Decomposition of a matrix */

CVAPI(void) cvSVD( CvArr* A, CvArr* W, CvArr* UCV_DEFAULT(NULL),

CvArr* VCV_DEFAULT(NULL), intflagsCV_DEFAULT(0));

//奇异值回代计算

/** Performs Singular Value Back Substitution (solves A*X = B):

flags must be the same as in cvSVD */

CVAPI(void) cvSVBkSb( constCvArr* W, constCvArr* U,

constCvArr* V, constCvArr* B,

CvArr* X, intflags);

//计算矩阵迹,对角线元素的总和

/** Calculates trace of the matrix (sum of elements on the main diagonal) */

CVAPI(CvScalar) cvTrace( constCvArr* mat);

//矩阵的转置运算

/** Tranposes matrix. Square matrices can be transposed in-place */

CVAPI(void) cvTranspose( constCvArr* src, CvArr* dst);

#definecvTcvTranspose

//按位异或操作

/** dst(idx) = src1(idx) ^ src2(idx) */

CVAPI(void) cvXor( constCvArr* src1, constCvArr* src2,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

//数组与标量之间按位异或

/** dst(idx) = src(idx) ^ value */

CVAPI(void) cvXorS( constCvArr* src, CvScalarvalue,

CvArr* dst, constCvArr* maskCV_DEFAULT(NULL));

//所有通道,所有元素置0

CVAPI(void) cvSetZero( CvArr* arr);

#definecvZerocvSetZero

绘图

1直线

//函数原型

/** @brief Draws 4-connected, 8-connected or antialiased line segment connecting two points

@see cv::line

*/

CVAPI(void) cvLine( CvArr* img, //图像

CvPointpt1, //直线的起始点

CvPointpt2,

CvScalarcolor, //颜色

intthicknessCV_DEFAULT(1),//线宽

intline_typeCV_DEFAULT(8), //8连通,反走样模式

intshiftCV_DEFAULT(0) );

//画矩形

/** @brief Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2)

if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn

@see cv::rectangle

*/

CVAPI(void) cvRectangle( CvArr* img,

CvPointpt1,

CvPointpt2,

CvScalarcolor,

intthicknessCV_DEFAULT(1),

intline_typeCV_DEFAULT(8),

intshiftCV_DEFAULT(0));

2圆形和椭圆

//画圆

/** @brief Draws a circle with specified center and radius.

Thickness works in the same way as with cvRectangle

@see cv::circle

*/

CVAPI(void) cvCircle( CvArr* img, //图像

CvPointcenter, //圆心

intradius,//半径

CvScalarcolor, //颜色

intthicknessCV_DEFAULT(1),//线宽

intline_typeCV_DEFAULT(8), //

intshiftCV_DEFAULT(0));//

//椭圆

CVAPI(void) cvEllipse( CvArr* img, //图像

CvPointcenter, //圆心

CvSizeaxes,//高度和宽度

doubleangle, //偏离主轴 的角度 ,x轴逆时针方向为正

doublestart_angle, //开始角度

doubleend_angle,//结束角度

CvScalarcolor, //颜色

intthicknessCV_DEFAULT(1),//线宽

intline_typeCV_DEFAULT(8),

intshiftCV_DEFAULT(0));

3多边形

//一次可以绘制多个多边形

/** @brief Fills an area bounded by one or more arbitrary polygons

@see cv::fillPoly

*/

CVAPI(void) cvFillPoly( CvArr* img,

CvPoint** pts,

constint* npts,//记数点构成的数组

intcontours,

CvScalarcolor,//颜色

intline_typeCV_DEFAULT(8),

intshiftCV_DEFAULT(0) );

//一次只能会制一个多边形,只能画凸多边形

/** @brief Fills convex or monotonous polygon.

@see cv::fillConvexPoly

*/

CVAPI(void) cvFillConvexPoly( CvArr* img,//图像

constCvPoint* pts,//

intnpts, //

CvScalarcolor,//颜色

intline_typeCV_DEFAULT(8),

intshiftCV_DEFAULT(0));

//只画边

/** @brief Draws one or more polygonal curves

@see cv::polylines

*/

CVAPI(void) cvPolyLine( CvArr* img,

CvPoint** pts,

constint* npts,

intcontours,

intis_closed,

CvScalarcolor,

intthicknessCV_DEFAULT(1),

intline_typeCV_DEFAULT(8),

intshiftCV_DEFAULT(0) );

4字体和文字

/** @brief Renders text stroke with specified font and color at specified location.

CvFont should be initialized with cvInitFont

@see cvInitFont, cvGetTextSize, cvFont, cv::putText

*/

CVAPI(void) cvPutText( CvArr* img, //图像

constchar* text, //文字内容

CvPointorg,//文本框左下角的位置

constCvFont* font, //字体格式

CvScalarcolor);//颜色

//初始化字体格式

CVAPI(void) cvInitFont( CvFont* font, //自定义的字体变量

intfont_face,//可用字体变量

doublehscale, //渲染时选择全高(1.0)半高(0.5)

doublevscale,//创建斜体字

doubleshearCV_DEFAULT(0),

intthicknessCV_DEFAULT(1),

intline_typeCV_DEFAULT(8));

可用字体

#defineCV_FONT_HERSHEY_SIMPLEX0

#defineCV_FONT_HERSHEY_PLAIN1

#defineCV_FONT_HERSHEY_DUPLEX2

#defineCV_FONT_HERSHEY_COMPLEX3

#defineCV_FONT_HERSHEY_TRIPLEX4

#defineCV_FONT_HERSHEY_COMPLEX_SMALL5

#defineCV_FONT_HERSHEY_SCRIPT_SIMPLEX6

#defineCV_FONT_HERSHEY_SCRIPT_COMPLEX7

示例代码如下:

/*

绘图

*/

intacmeArr1[2];

CvPointpointArr2[3];

voiddrawing() {

//读入图像

IplImage*img = cvLoadImage("test2.jpg");

//直线的起始点

CvPointpit1= cvPoint(10, 10);

CvPointpit2 = cvPoint(100,200);

//线的颜色

CvScalarcolor= cvScalar(255, 0, 0);

//画线

//cvLine(img, pit1, pit2, color,2,8,0);

//画矩形

//cvRectangle(img,pit1,pit2,color,CV_FILLED);

//画圆形

//cvCircle(img,pit2,100,color,CV_FILLED);

//画椭圆

//CvSize eSize = cvSize(100, 50);

//cvEllipse(img,pit2,eSize,0,0,360,color);

//画多边形

//一次可以同时画多个多边形,全填充

//初始化多边开数组

CvPoint** pointArrs = newCvPoint*[2];

pointArrs[0] = newCvPoint[3];

pointArrs[1] = newCvPoint[4];

intacmeArr1[2] = { 3,4 };

//三角形

pointArrs[0][0] =cvPoint(200,40);

pointArrs[0][1] =cvPoint(150, 80);

pointArrs[0][2]=cvPoint(250, 80);

//四边形

pointArrs[1][0] =cvPoint(150, 100);

pointArrs[1][1] =cvPoint(250, 100);

pointArrs[1][2]=cvPoint(250, 200);

pointArrs[1][3]=cvPoint(150, 200);

//初始化顶点数组

cvFillPoly(img, pointArrs, acmeArr1,2,color);

//一次只能画一个多边形

//初始化多边开数组

//pointArr2[1]= cvPoint(100, 100);

//pointArr2[2] = cvPoint(100, 300);

//pointArr2[3] = cvPoint(200, 400);

//顶点数

//int num = 3;

//cvFillConvexPoly(img, pointArr2, num,color);

//只连线画边

//cvPolyLine(img, pointArrs, acmeArr1, 2,true, color);

//字体与文字

//初始化字体格式

//CvFont myFont;

//cvInitFont(&myFont,CV_FONT_HERSHEY_COMPLEX,1.0,1.0,0.0);

//cvPutText(img,"hello retacn!",pit2,&myFont,color);

//创建窗体

cvNamedWindow("Drawing");

//显示图像

cvShowImage("Drawing", img);

cvWaitKey();

}

数据存储

存储的格式有 YAML 和 XML

图片:

//保存图像

/* save image to file */

CVAPI(int) cvSaveImage( constchar* filename,//文件名称s

constCvArr* image,//图像

constint* paramsCV_DEFAULT(0) );

//加载图像

/* load image from file

iscolor can be a combination of above flags where CV_LOAD_IMAGE_UNCHANGED

overrides the other flags

using CV_LOAD_IMAGE_ANYCOLOR alone is equivalent to CV_LOAD_IMAGE_UNCHANGED

unless CV_LOAD_IMAGE_ANYDEPTH is specified images are converted to 8bit

*/

CVAPI(IplImage*) cvLoadImage( constchar* filename, intiscolorCV_DEFAULT(CV_LOAD_IMAGE_COLOR));

CVAPI(CvMat*) cvLoadImageM( constchar* filename, intiscolorCV_DEFAULT(CV_LOAD_IMAGE_COLOR));

cvMat的读取

CVAPI(void) cvSave( constchar* filename, //文件名

constvoid* struct_ptr,//

constchar* nameCV_DEFAULT(NULL),

constchar* commentCV_DEFAULT(NULL),

CvAttrListattributesCV_DEFAULT(cvAttrList()));

CVAPI(void*) cvLoad( constchar* filename,

CvMemStorage* memstorageCV_DEFAULT(NULL),

constchar* nameCV_DEFAULT(NULL),

constchar** real_nameCV_DEFAULT(NULL) );

视频的读取

/* grab a frame, return 1 on success, 0 on fail.

this function is thought to be fast */

CVAPI(int) cvGrabFrame( CvCapture* capture);

/* initialize video file writer */

CVAPI(CvVideoWriter*) cvCreateVideoWriter( constchar* filename, intfourcc,

doublefps, CvSizeframe_size,

intis_colorCV_DEFAULT(1));

/* write frame to video file */

CVAPI(int) cvWriteFrame( CvVideoWriter* writer, constIplImage* image);

/*

往磁盘上写一个配置文件

*/

voidwriteCfg() {

CvMat* cmatrix=cvCreateMat(2,3,CV_8UC3);

CvFileStorage* fs = cvOpenFileStorage(

"cfg.xml",

0,

CV_STORAGE_WRITE//写数据,读数扰为CV_STORAGE_READ

);

cvWriteInt(fs, "frame_count", 10);

cvStartWriteStruct(fs, "frame_size", CV_NODE_SEQ);//开始结构编写

cvWriteInt(fs, 0, 320);

cvWriteInt(fs, 0, 200);

cvEndWriteStruct(fs);//结构结束

cvWrite(fs, "color_cvt_matrix", cmatrix);//色彩转换矩阵

cvReleaseFileStorage(&fs);//释放cvFileStorage

}

生成文件的内容如下:

10

320 200

2

3

"3u"

205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205

205

/*

读取配置文件

*/

voidreadCfg() {

CvFileStorage* fs = cvOpenFileStorage(

"cfg.xml",

0,

CV_STORAGE_READ//写数据,读数扰为CV_STORAGE_READ

);

intframe_count = cvReadIntByName(

fs,

0,

"frame_count",

5

);

//得到结构体

CvSeq* s = cvGetFileNodeByName(fs, 0, "frame_size")->data.seq;

intframe_width = cvReadInt((CvFileNode*)cvGetSeqElem(s,0));

intframe_height = cvReadInt((CvFileNode*)cvGetSeqElem(s, 1));

CvMat* color_cvt_matrix = (CvMat*)cvReadByName(

fs,

0,

"color_cvt_matrix"

);

cvReleaseFileStorage(&fs);

}

数据存储常用函数

cvOpenFileStorage//为读写打开文件

cvReleaseFileStorage//释放存储的数据

写操作

cvStartWriteStruct//开始写入新的数据结构

cvEndWriteStruct//结束写入数据结构

cvWriteInt//写入整型

cvWriteReal//写入浮点型

cvWriteString//写入字符串

cvWriteComment//写入一个注释定串

cvWrite//写入一个对象

cvWriteRawData//写入多个数值

cvWriteFileNode//将文件结点写入另一个文件存储器

读操作

cvGetRootFileNode//取得存储器的根节点

cvGetFileNodeName//返回文件节点名

cvGetHashedKey//为名称返回一个唯一的指什

cvGetFileNode//在映图或文件存储器中找到节点

cvGetFileNodeByName//在映图或存储器中找到相应节点

cvReadInt//读取整型

cvReadIntByName//读取一个有名称的整型

cvReadReal//读取浮点型

cvReadRealByName//读取一个有名称的浮点型

cvReadString//从文件节点取字符串

cvReadStringByName//根据名称查取得文件节点

cvRead//找到对象解码并返回指针

cvReadByName//打到对象并解码

cvReadRawData//读取多个数值

cvStartReadRawData//初始化文件结点序列的读取

cvReadRawDataSlice//读取文件节点的内容

你可能感兴趣的:(学习opencv_学习笔记二)