在Yarn上运行spark-shell和spark-sql命令行

关键字:spark-shell on yarn、spark-sql on yarn

前面的文章《Spark On Yarn:提交Spark应用程序到Yarn》介绍了将Spark应用程序提交到Yarn上运行。有时候在做开发测试的时候,需要使用spark-shell和spark-sql命令行,除了Local和Spark standalone模式,spark-shell和spark-sql也可以运行在yarn上,这里就简单介绍一下使用方法。

spark-shell On Yarn

如果你已经有一个正常运行的Hadoop Yarn环境,那么只需要下载相应版本的Spark,解压之后做为Spark客户端即可。

需要配置Yarn的配置文件目录,export HADOOP_CONF_DIR=/etc/hadoop/conf   这个可以配置在spark-env.sh中。

运行命令:

    
    
    
    
  1. cd $SPARK_HOME/bin
  2. ./spark-shell \
  3. --master yarn-client \
  4. --executor-memory 1G \
  5. --num-executors 10

注意,这里的–master必须使用yarn-client模式,如果指定yarn-cluster,则会报错:

Error: Cluster deploy mode is not applicable to Spark shells.

因为spark-shell作为一个与用户交互的命令行,必须将Driver运行在本地,而不是yarn上。

其中的参数与提交Spark应用程序到yarn上用法一样。

启动之后,在命令行看上去和standalone模式下的无异:

在ResourceManager的WEB页面上,看到了该应用程序(spark-shell是被当做一个长服务的应用程序运行在yarn上):

点击ApplicationMaster的UI,进入到了Spark应用程序监控的WEB页面:

 

spark-sql On Yarn

spark-sql命令行运行在yarn上,原理和spark-shell on yarn一样。只不过需要将Hive使用的相关包都加到Spark环境变量。

1. 将hive-site.xml拷贝到$SPARK_HOME/conf

2.export HIVE_HOME=/usr/local/apache-hive-0.13.1-bin 添加到spark-env.sh

3.将以下jar包添加到Spark环境变量:

datanucleus-api-jdo-3.2.6.jar、datanucleus-core-3.2.10.jar、datanucleus-rdbms-3.2.9.jar、mysql-connector-java-5.1.15-bin.jar

可以在spark-env.sh中直接添加到SPARK_CLASSPATH变量中。

 

运行命令:

    
    
    
    
  1. cd $SPARK_HOME/bin
  2. ./spark-sql \
  3. --master yarn-client \
  4. --executor-memory 1G \
  5. --num-executors 10

即可在yarn上运行spark-sql命令行。

在ResourceManager上的显示以及点击ApplicationMaster进去Spark的WEB UI,与spark-shell无异。

 

这样,只要之前有使用Hadoop Yarn,那么就不需要搭建standalone的Spark集群,也能发挥Spark的强大威力了。

 

其他相关阅读:

Spark On Yarn:提交Spark应用程序到Yarn

Spark1.3.1安装配置运行

Spark1.4.0-SparkSQL与Hive整合-支持窗口分析函数

Spark算子系列文章

 

如果觉得本博客对您有帮助,请 赞助作者 。

转载请注明:lxw的大数据田地 » 在Yarn上运行spark-shell和spark-sql命令行

喜欢 ( 4) 分享 (4)

你可能感兴趣的:(spark)