Tersorflow深度学习入门—— CIFAR-10 训练示例报错及解决方案

前言:相关环境搭建

TF(tensorflow)安装之python

tensorflow 之 bazel安装 & 使用

Python的库sklearn安装 & bazel安装 & cmake


GBDT安装(xgboost LightGBM)

GBDT 之 Boosting方法

linux export 环境变量设置


一:Tersorflow CIFAR-10 训练示例报错及解决方案(1)

1.AttributeError:'module' object has noattribute 'random_crop'

##解决方案:

将distorted_image= tf.image.random_crop(reshaped_image,[height, width])改为:

distorted_image = tf.random_crop(reshaped_image,[height,width,3])


2.  AttributeError:'module'object has no attribute 'SummaryWriter'

##解决方案:tf.train.SummaryWriter改为:tf.summary.FileWriter


3.  AttributeError:'module'object has no attribute 'summaries'

解决方案:  tf.merge_all_summaries()改为:summary_op =tf.summaries.merge_all()


4. AttributeError: 'module' object hasno attribute'histogram_summary

tf.histogram_summary(var.op.name,var)改为: tf.summaries.histogram()


5. AttributeError: 'module' object hasno attribute'scalar_summary'

tf.scalar_summary(l.op.name+ ' (raw)', l)

##解决方案:

tf.scalar_summary('images',images)改为:tf.summary.scalar('images', images)

tf.image_summary('images',images)改为:tf.summary.image('images', images)


6. ValueError: Only call`softmax_cross_entropy_with_logits` withnamed arguments (labels=...,logits=..., ...)

##解决方案:

  cifar10.loss(labels, logits) 改为:cifar10.loss(logits=logits,labels=labels)

 cross_entropy=tf.nn.softmax_cross_entropy_with_logits(

        logits,dense_labels,name='cross_entropy_per_example')

改为:

  cross_entropy =tf.nn.softmax_cross_entropy_with_logits(

       logits=logits, labels=dense_labels,name='cross_entropy_per_example')


7. TypeError: Using a `tf.Tensor` as a Python `bool`isnot allowed. Use `if t is not None:` instead of `if t:` to test if a tensorisdefined, and use TensorFlow ops such as tf.cond to execute subgraphsconditionedon the value of a tensor.

##解决方案:

if grad: 改为  if grad is not None:


8. ValueError: Shapes (2, 128, 1) and () are incompatible

###解决方案:

concated = tf.concat(1, [indices, sparse_labels])改为:

concated= tf.concat([indices, sparse_labels], 1)


9. 报错:(这个暂时没有遇到)

File"/home/lily/work/Tensorflow/CIRFAR-10/tensorflow.cifar10-master/cifar10_input.py",line83, in read_cifar10

    result.key, value=reader.read(filename_queue)

 File"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py",line326, in read

queue_ref = queue.queue_ref

AttributeError: 'str' object hasno attribute 'queue_ref'

###解决方案:

由于训练样本的路径需要修改,给cifar10_input.py中data_dir赋值为本地数据所在的文件夹

以上参考自 http://blog.csdn.net/xiao_lxl/article/details/70622209

二:Tersorflow CIFAR-10 训练示例报错及解决方案(2)

1, File"tensorflow/models/slim/preprocessing/cifarnet_preproces.py", line70, in preprocess_for_train

return tf.image.per_image_whitening(distorted_image)
AttributeError: 'module' object has no attribute'per_image_whitening'


2,tensorflow:AttributeError: 'module' object has noattribute 'mul'


3,bin/im2txt/evaluate.runfiles/im2txt/im2txt/evaluate.py",line 174, in run summary_op = tf.merge_all_summaries() AttributeError: 'module'object has no attribute 'merge_all_summaries'

What can I do for this?



三:结束语

公共学习,共同攻克cnn,如有不妥之处欢迎留言。


目录:

1,机器学习 & MR

Hadoop进阶(hadoop streaming c++实现 & MapReduce参数调优)

hadoop streaming (shell执行 & combiner & 数据分割)

hadoop streaming python 处理 lzo 文件遇到的问题

spark安装与调试

推荐算法之Jaccard相似度与Consine相似度

LibLinear使用总结

深度学习在推荐领域的应用 

2,tensorflow 安转与使用

Tersorflow深度学习入门—— CIFAR-10 训练示例报错及解决方案

tensorflow 之 bazel安装 & 使用

Python的库sklearn安装 & bazel安装 & cmake

TF(tensorflow)安装之python

GBDT 之 Boosting方法

GBDT安装(xgboost LightGBM),

3,工具安装

linux export 环境变量设置   

urlencode & quote & unquote (url 中带中文参数)  

linux crontab -e报错

configure --prefix=/ & yum install 路径

rethat / CentOS环境配置

redis 值 hiredis (c/c++)


你可能感兴趣的:(数据挖掘&机器学习)