TensorFlow 卷积神经网络之猫狗识别

环境:python 3.6.1 : Anaconda 4.4.0 tf 1.2.0
这份数据集来源于Kaggle,数据集有12500只猫和12500只狗。在这里简单介绍下整体思路

  1. 处理数据
  2. 设计神经网络
  3. 进行训练测试

1. 数据处理

将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次。

  1. 第一步get_files() 方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回
  2. 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回。

新建数据处理文件 ,文件名 input_data.py

import tensorflow as tf
import os 
import numpy as np

def get_files(file_dir):
	cats = []
	label_cats = []
	dogs = []
	label_dogs = []
	for file in os.listdir(file_dir):
		name = file.split(sep='.')
		if 'cat' in name[0]:
			cats.append(file_dir + file)
			label_cats.append(0)
		else:
			if 'dog' in name[0]:
				dogs.append(file_dir + file)
				label_dogs.append(1)
		image_list = np.hstack((cats,dogs))
		label_list = np.hstack((label_cats,label_dogs))
			# print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs)))
			# 多个种类分别的时候需要把多个种类放在一起,打乱顺序,这里不需要
     
	# 把标签和图片都放倒一个 temp 中 然后打乱顺序,然后取出来
	temp = np.array([image_list,label_list])
	temp = temp.transpose()
	# 打乱顺序
	np.random.shuffle(temp)

	# 取出第一个元素作为 image 第二个元素作为 label
	image_list = list(temp[:,0])
	label_list = list(temp[:,1])
	label_list = [int(i) for i in label_list]  
	return image_list,label_list

# 测试 get_files
# imgs , label = get_files('/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/')
# for i in imgs:
# 	print("img:",i)

# for i in label:
# 	print('label:',i)
# 测试 get_files end


# image_W ,image_H 指定图片大小,batch_size 每批读取的个数 ,capacity队列中 最多容纳元素的个数
def get_batch(image,label,image_W,image_H,batch_size,capacity):
	# 转换数据为 ts 能识别的格式
	image = tf.cast(image,tf.string)
	label = tf.cast(label, tf.int32)

	# 将image 和 label 放倒队列里 
	input_queue = tf.train.slice_input_producer([image,label])
	label = input_queue[1]
	# 读取图片的全部信息
	image_contents = tf.read_file(input_queue[0])
	# 把图片解码,channels =3 为彩色图片, r,g ,b  黑白图片为 1 ,也可以理解为图片的厚度
	image = tf.image.decode_jpeg(image_contents,channels =3)
	# 将图片以图片中心进行裁剪或者扩充为 指定的image_W,image_H
	image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
	# 对数据进行标准化,标准化,就是减去它的均值,除以他的方差
	image = tf.image.per_image_standardization(image)

	# 生成批次  num_threads 有多少个线程根据电脑配置设置  capacity 队列中 最多容纳图片的个数  tf.train.shuffle_batch 打乱顺序,
	image_batch, label_batch = tf.train.batch([image, label],batch_size = batch_size, num_threads = 64, capacity = capacity)
	
    # 重新定义下 label_batch 的形状
	label_batch = tf.reshape(label_batch , [batch_size])
	# 转化图片
	image_batch = tf.cast(image_batch,tf.float32)
	return  image_batch, label_batch
  

# test get_batch
# import matplotlib.pyplot as plt
# BATCH_SIZE = 2
# CAPACITY = 256  
# IMG_W = 208
# IMG_H = 208

# train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/'

# image_list, label_list = get_files(train_dir)
# image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

# with tf.Session() as sess:
#    i = 0
#    #  Coordinator  和 start_queue_runners 监控 queue 的状态,不停的入队出队
#    coord = tf.train.Coordinator()
#    threads = tf.train.start_queue_runners(coord=coord)
#    # coord.should_stop() 返回 true 时也就是 数据读完了应该调用 coord.request_stop()
#    try: 
#        while not coord.should_stop() and i<1:
#            # 测试一个步
#            img, label = sess.run([image_batch, label_batch])
           
#            for j in np.arange(BATCH_SIZE):
#                print('label: %d' %label[j])
#                # 因为是个4D 的数据所以第一个为 索引 其他的为冒号就行了
#                plt.imshow(img[j,:,:,:])
#                plt.show()
#            i+=1
#    # 队列中没有数据
#    except tf.errors.OutOfRangeError:
#        print('done!')
#    finally:
#        coord.request_stop()
#    coord.join(threads)
   # sess.close()

2. 设计神经网络

利用卷积神经网路处理,网络结构为

# conv1   卷积层 1
# pooling1_lrn  池化层 1
# conv2  卷积层 2
# pooling2_lrn 池化层 2
# local3 全连接层 1
# local4 全连接层 2
# softmax 全连接层 3

新建神经网络文件 ,文件名 model.py

#coding=utf-8  
import tensorflow as tf  

def inference(images, batch_size, n_classes):  
  
    with tf.variable_scope('conv1') as scope: 
     # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
        weights = tf.get_variable('weights',  
                                  shape=[3, 3, 3, 16],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[16],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  
        pre_activation = tf.nn.bias_add(conv, biases)  
        conv1 = tf.nn.relu(pre_activation, name=scope.name)  
  
    with tf.variable_scope('pooling1_lrn') as scope:  
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  
  
    with tf.variable_scope('conv2') as scope:  
                weights = tf.get_variable('weights',  
                                          shape=[3, 3, 16, 16],  
                                          dtype=tf.float32,  
                                          initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
                biases = tf.get_variable('biases',  
                                         shape=[16],  
                                         dtype=tf.float32,  
                                         initializer=tf.constant_initializer(0.1))  
                conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  
                pre_activation = tf.nn.bias_add(conv, biases)  
                conv2 = tf.nn.relu(pre_activation, name='conv2')  
  
    # pool2 and norm2  
    with tf.variable_scope('pooling2_lrn') as scope:  
        norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  
        pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  
  
    with tf.variable_scope('local3') as scope:  
        reshape = tf.reshape(pool2, shape=[batch_size, -1])  
        dim = reshape.get_shape()[1].value  
        weights = tf.get_variable('weights',  
                                  shape=[dim, 128],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[128],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  
  
    # local4  
    with tf.variable_scope('local4') as scope:  
        weights = tf.get_variable('weights',  
                                  shape=[128, 128],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[128],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  
  
    # softmax  
    with tf.variable_scope('softmax_linear') as scope:  
        weights = tf.get_variable('softmax_linear',  
                                  shape=[128, n_classes],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[n_classes],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')  
  
    return softmax_linear  
  
  
  
def losses(logits, labels):  
    with tf.variable_scope('loss') as scope:  
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
                        (logits=logits, labels=labels, name='xentropy_per_example')  
        loss = tf.reduce_mean(cross_entropy, name='loss')  
        tf.summary.scalar(scope.name + '/loss', loss)  
    return loss  
  
def trainning(loss, learning_rate):  
    with tf.name_scope('optimizer'):  
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)  
        global_step = tf.Variable(0, name='global_step', trainable=False)  
        train_op = optimizer.minimize(loss, global_step= global_step)  
    return train_op  
  
def evaluation(logits, labels):  
    with tf.variable_scope('accuracy') as scope:  
        correct = tf.nn.in_top_k(logits, labels, 1)  
        correct = tf.cast(correct, tf.float16)  
        accuracy = tf.reduce_mean(correct)  
        tf.summary.scalar(scope.name + '/accuracy', accuracy)  
    return accuracy

3. 训练数据,并将训练的模型存储

import os  
import numpy as np  
import tensorflow as tf  
import input_data     
import model  

  
N_CLASSES = 2  # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率
IMG_W = 208  # 重新定义图片的大小,图片如果过大则训练比较慢  
IMG_H = 208  
BATCH_SIZE = 32  #每批数据的大小
CAPACITY = 256  
MAX_STEP = 15000 # 训练的步数,应当 >= 10000
learning_rate = 0.0001 # 学习率,建议刚开始的 learning_rate <= 0.0001
  

def run_training():  
      
    # 数据集
    train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/img/'   #My dir--20170727-csq  
    #logs_train_dir 存放训练模型的过程的数据,在tensorboard 中查看 
    logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/'  

    # 获取图片和标签集
    train, train_label = input_data.get_files(train_dir)  
    # 生成批次
    train_batch, train_label_batch = input_data.get_batch(train,  
                                                          train_label,  
                                                          IMG_W,  
                                                          IMG_H,  
                                                          BATCH_SIZE,   
                                                          CAPACITY)
    # 进入模型
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES) 
    # 获取 loss 
    train_loss = model.losses(train_logits, train_label_batch)
    # 训练 
    train_op = model.trainning(train_loss, learning_rate)
    # 获取准确率 
    train__acc = model.evaluation(train_logits, train_label_batch)  
    # 合并 summary
    summary_op = tf.summary.merge_all()  
    sess = tf.Session()
    # 保存summary
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)  
    saver = tf.train.Saver()  
      
    sess.run(tf.global_variables_initializer())  
    coord = tf.train.Coordinator()  
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)  
      
    try:  
        for step in np.arange(MAX_STEP):  
            if coord.should_stop():  
                    break  
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])  
                 
            if step % 50 == 0:  
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))  
                summary_str = sess.run(summary_op)  
                train_writer.add_summary(summary_str, step)  
              
            if step % 2000 == 0 or (step + 1) == MAX_STEP:  
                # 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')  
                saver.save(sess, checkpoint_path, global_step=step)  
                  
    except tf.errors.OutOfRangeError:  
        print('Done training -- epoch limit reached')  
    finally:  
        coord.request_stop()
    coord.join(threads)  
    sess.close()  

# train
run_training()

关于保存的模型怎么使用将在下一片博客中 展示。
TensorFlow 卷积神经网络之使用训练好的模型识别猫狗图片
如果需要训练数据集可以评论留下联系方式。

原文完整代码地址:
https://github.com/527515025/My-TensorFlow-tutorials/tree/master/%E7%8C%AB%E7%8B%97%E8%AF%86%E5%88%AB
欢迎 star 欢迎提问。

你可能感兴趣的:(9.1,Tensorflow,9.机器学习)