在上一篇博客中,实现了JDK的动态代理。但是,我们不仅要学会如何使用,更要理解其内部的具体实现。
我们是通过此方法获得对目标对象的代理类:
public Object getProxy() {
//参数意义:1. 当前类加载器 2. 目标类的class对象 3. 目标类的所有接口 4. 实现InvocationHandler接口的类
return Proxy.newProxyInstance(Thread.currentThread().getContextClassLoader(), target.getClass().getInterfaces(), this);
}
接下来,进入newProxyInstance()中看一下其实现逻辑(JDK1.8的实现):具体的解释都在代码中体现
public static Object newProxyInstance(ClassLoader loader,
Class>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
//Objects提供了操作Object类的一些实用方法。判断h不为空,为空抛出空指针异常
Objects.requireNonNull(h);
// 复制接口的class对象
final Class>[] intfs = interfaces.clone();
//安全检查
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}
/*
* Look up or generate the designated proxy class.
* 生成代理类的class对象。
*/
Class> cl = getProxyClass0(loader, intfs);
/*
* Invoke its constructor with the designated invocation handler.
*/
try {
if (sm != null) {
checkNewProxyPermission(Reflection.getCallerClass(), cl);
}
// 获得代理类的构造函数,参数constructorParams
//private static final Class>[] constructorParams ={ InvocationHandler.class };
final Constructor> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
//一些检查操作,不详细解释
if (!Modifier.isPublic(cl.getModifiers())) {
AccessController.doPrivileged(new PrivilegedAction() {
public Void run() {
cons.setAccessible(true);
return null;
}
});
}
//利用构造函数,创建代理类实例,参数是自己实现了InvocationHandler的代理逻辑类
return cons.newInstance(new Object[]{h});
} catch (IllegalAccessException|InstantiationException e) {
throw new InternalError(e.toString(), e);
} catch (InvocationTargetException e) {
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
}
}
上边的源码中其实核心点就是我注释的那几行。其中生成代理类的class对象的方法为:
Class> cl = getProxyClass0(loader, intfs);
进入此方法中看一下:
private static Class> getProxyClass0(ClassLoader loader,
Class>... interfaces) {
//当被代理的目标类的接口大于65535,则抛出异常。---估计没人会写这种代码吧
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}
// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}
这个方法是获得代理类对象的关键。
return proxyClassCache.get(loader, interfaces);
通过上边的注释,就可知道,对代理类进行了缓存,当查找缓存中没有时,就会通过ProxyClassFactory来创建代理类。可以查看proxyClassCache变量的定义:
private static final WeakCacheClass>[], Class>>
proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());
从定义上可以看到,它是通过WeakCache来实现缓存的。WeakCache Java的弱引用。
public WeakCache(BiFunction subKeyFactory,
BiFunction valueFactory) {
this.subKeyFactory = Objects.requireNonNull(subKeyFactory);
this.valueFactory = Objects.requireNonNull(valueFactory);
}
构造函数,传入两个类对象:new KeyFactory()和new ProxyClassFactory()。这两个类都是Proxy类的内部类,且都实现了BiFunction接口。
然后,我们接着回到 proxyClassCache.get(loader, interfaces)方法,进入此方法中看一下实现:
public V get(K key, P parameter) {
//判断被代理的目标类是否有接口,没有的话将抛出异常
Objects.requireNonNull(parameter);
expungeStaleEntries();
Object cacheKey = CacheKey.valueOf(key, refQueue);
// lazily install the 2nd level valuesMap for the particular cacheKey
ConcurrentMap
这里的缓存实现暂不仔细看,主要是看ProxyClassFactory是如何生成代理类的。ProxyClassFactory是实现了BiFunction接口的apply方法。
private static final class ProxyClassFactory
implements BiFunction<ClassLoader, Class>[], Class>>
{
// prefix for all proxy class names
//生成的代理类类名的前缀
private static final String proxyClassNamePrefix = "$Proxy";
// next number to use for generation of unique proxy class names
// 代理类名字的计数器。最后组成代理类名$Proxy0 $Proxy1 ...
private static final AtomicLong nextUniqueNumber = new AtomicLong();
@Override
public Class> apply(ClassLoader loader, Class>[] interfaces) {
Map, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
//验证代理接口的代码
for (Class> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
Class> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface.
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate.
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}
//代理的包路径
String proxyPkg = null; // package to define proxy class in
int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package. Verify that
* all non-public proxy interfaces are in the same package.
*/
//非公共接口,代理类包名与接口相同
for (Class> intf : interfaces) {
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
accessFlags = Modifier.FINAL;
String name = intf.getName();
int n = name.lastIndexOf('.');
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}
//公共接口包名:默认:com.sun.proxy
if (proxyPkg == null) {
// if no non-public proxy interfaces, use com.sun.proxy package
proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
}
/*
* Choose a name for the proxy class to generate.
*/
long num = nextUniqueNumber.getAndIncrement();
//组成完整的类路径
String proxyName = proxyPkg + proxyClassNamePrefix + num;
/*
* Generate the specified proxy class.
*/
//生成代理类的字节码文件
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces, accessFlags);
try {
//根据二进制的字节码文件生成代理类的class对象
return defineClass0(loader, proxyName,
proxyClassFile, 0, proxyClassFile.length);
} catch (ClassFormatError e) {
/*
* A ClassFormatError here means that (barring bugs in the
* proxy class generation code) there was some other
* invalid aspect of the arguments supplied to the proxy
* class creation (such as virtual machine limitations
* exceeded).
*/
throw new IllegalArgumentException(e.toString());
}
}
}
接下来,我们看一下是如何生成字节码文件的:
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces, accessFlags);
ProxyGenerator是sun.misc的包。此方法为:
public static byte[] generateProxyClass(final String var0, Class>[] var1, int var2) {
ProxyGenerator var3 = new ProxyGenerator(var0, var1, var2);
final byte[] var4 = var3.generateClassFile();
if(saveGeneratedFiles) {
AccessController.doPrivileged(new PrivilegedAction() {
public Void run() {
try {
int var1 = var0.lastIndexOf(46);
Path var2;
if(var1 > 0) {
Path var3 = Paths.get(var0.substring(0, var1).replace('.', File.separatorChar), new String[0]);
Files.createDirectories(var3, new FileAttribute[0]);
var2 = var3.resolve(var0.substring(var1 + 1, var0.length()) + ".class");
} else {
var2 = Paths.get(var0 + ".class", new String[0]);
}
Files.write(var2, var4, new OpenOption[0]);
return null;
} catch (IOException var4x) {
throw new InternalError("I/O exception saving generated file: " + var4x);
}
}
});
}
return var4;
}
层层调用后,最终调用generateClassFile方法才是真正生成代理类字节码文件的方法。
final byte[] var4 = var3.generateClassFile();
这个方法的源码有点长:
private byte[] generateClassFile() {
//addProxyMethod系列方法就是将接口的方法和Object的hashCode,equals,toString方法添加到代理方法容器(proxyMethods)
this.addProxyMethod(hashCodeMethod, Object.class);
this.addProxyMethod(equalsMethod, Object.class);
this.addProxyMethod(toStringMethod, Object.class);
Class[] var1 = this.interfaces;
int var2 = var1.length;
int var3;
Class var4;
// 获取接口所有的方法,将方法添加到代理方法中
for(var3 = 0; var3 < var2; ++var3) {
var4 = var1[var3];
Method[] var5 = var4.getMethods();
int var6 = var5.length;
for(int var7 = 0; var7 < var6; ++var7) {
Method var8 = var5[var7];
this.addProxyMethod(var8, var4);
}
}
Iterator var11 = this.proxyMethods.values().iterator();
List var12;
while(var11.hasNext()) {
var12 = (List)var11.next();
checkReturnTypes(var12);
}
Iterator var15;
try {
this.methods.add(this.generateConstructor());
var11 = this.proxyMethods.values().iterator();
while(var11.hasNext()) {
var12 = (List)var11.next();
var15 = var12.iterator();
while(var15.hasNext()) {
ProxyGenerator.ProxyMethod var16 = (ProxyGenerator.ProxyMethod)var15.next();
this.fields.add(new ProxyGenerator.FieldInfo(var16.methodFieldName, "Ljava/lang/reflect/Method;", 10));
this.methods.add(var16.generateMethod());
}
}
this.methods.add(this.generateStaticInitializer());
} catch (IOException var10) {
throw new InternalError("unexpected I/O Exception", var10);
}
if(this.methods.size() > '\uffff') {
throw new IllegalArgumentException("method limit exceeded");
} else if(this.fields.size() > '\uffff') {
throw new IllegalArgumentException("field limit exceeded");
} else {
this.cp.getClass(dotToSlash(this.className));
this.cp.getClass("java/lang/reflect/Proxy");
var1 = this.interfaces;
var2 = var1.length;
for(var3 = 0; var3 < var2; ++var3) {
var4 = var1[var3];
this.cp.getClass(dotToSlash(var4.getName()));
}
this.cp.setReadOnly();
ByteArrayOutputStream var13 = new ByteArrayOutputStream();
DataOutputStream var14 = new DataOutputStream(var13);
try {
var14.writeInt(-889275714);
var14.writeShort(0);
var14.writeShort(49);
this.cp.write(var14);
var14.writeShort(this.accessFlags);
var14.writeShort(this.cp.getClass(dotToSlash(this.className)));
var14.writeShort(this.cp.getClass("java/lang/reflect/Proxy"));
var14.writeShort(this.interfaces.length);
Class[] var17 = this.interfaces;
int var18 = var17.length;
for(int var19 = 0; var19 < var18; ++var19) {
Class var22 = var17[var19];
var14.writeShort(this.cp.getClass(dotToSlash(var22.getName())));
}
var14.writeShort(this.fields.size());
var15 = this.fields.iterator();
while(var15.hasNext()) {
ProxyGenerator.FieldInfo var20 = (ProxyGenerator.FieldInfo)var15.next();
var20.write(var14);
}
var14.writeShort(this.methods.size());
var15 = this.methods.iterator();
while(var15.hasNext()) {
ProxyGenerator.MethodInfo var21 = (ProxyGenerator.MethodInfo)var15.next();
var21.write(var14);
}
var14.writeShort(0);
return var13.toByteArray();
} catch (IOException var9) {
throw new InternalError("unexpected I/O Exception", var9);
}
}
}
注意开头的三个addProxyMethod方法是只将Object的hashcode,equals,toString方法添加到代理方法容器中,代理类除此之外并没有重写其他Object的方法,所以除这三个方法外,代理类调用其他方法的行为与Object调用这些方法的行为一样不通过Invoke。
没有完全看懂上边的代码。还可以查看addProxyMethod的源码。这里就不看了。
在动态代理中InvocationHandler是核心,每个代理实例都具有一个关联的调用处理程序(InvocationHandler)。对代理实例调用方法时,将对方法调用进行编码并将其指派到它的调用处理程序(InvocationHandler)的 invoke 方法。所以对代理方法的调用都是通InvocationHadler的invoke来实现中,而invoke方法根据传入的代理对象,方法和参数来决定调用代理的哪个方法
我们来看一下生成的代理类$Proxy0:在main函数中生成代理类之前添加如下代码:
System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles", "true");
这会将生成的代理类的class代码写入到磁盘中项目路径下,路径为com.sun.proxy。需要提前创建。
反编译后的class文件为:
//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
//
package com.sun.proxy;
import com.blog.jdkproxy.IUserDao;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;
public final class $Proxy0 extends Proxy implements IUserDao {
private static Method m1;
private static Method m2;
private static Method m3;
private static Method m4;
private static Method m0;
public $Proxy0(InvocationHandler var1) throws {
super(var1);
}
public final boolean equals(Object var1) throws {
try {
return ((Boolean)super.h.invoke(this, m1, new Object[]{var1})).booleanValue();
} catch (RuntimeException | Error var3) {
throw var3;
} catch (Throwable var4) {
throw new UndeclaredThrowableException(var4);
}
}
public final String toString() throws {
try {
return (String)super.h.invoke(this, m2, (Object[])null);
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
public final int add() throws {
try {
return ((Integer)super.h.invoke(this, m3, (Object[])null)).intValue();
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
public final int delete() throws {
try {
return ((Integer)super.h.invoke(this, m4, (Object[])null)).intValue();
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
public final int hashCode() throws {
try {
return ((Integer)super.h.invoke(this, m0, (Object[])null)).intValue();
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
static {
try {
m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[]{Class.forName("java.lang.Object")});
m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);
m3 = Class.forName("com.blog.jdkproxy.IUserDao").getMethod("add", new Class[0]);
m4 = Class.forName("com.blog.jdkproxy.IUserDao").getMethod("delete", new Class[0]);
m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
} catch (NoSuchMethodException var2) {
throw new NoSuchMethodError(var2.getMessage());
} catch (ClassNotFoundException var3) {
throw new NoClassDefFoundError(var3.getMessage());
}
}
}
从上边的代理类来看,其继承了Proxy类,并且实现了目标类的接口。提供了一个使用InvocationHandler作为参数的构造方法。重写了Object类的equals、hashCode、toString,它们都只是简单的调用了InvocationHandler的invoke方法,即可以对其进行特殊的操作,也就是说JDK的动态代理还可以代理上述三个方法。重写了接口的方法:
public final int add() throws {
try {
return ((Integer)super.h.invoke(this, m3, (Object[])null)).intValue();
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
并且利用h.invoke(this, m3, (Object[])null))来调用横切逻辑。这也能看到,利用JDK动态代理来实现时,invoke的横切逻辑(增强)是针对所有方法的。且只能对接口中的方法进行代理。