Mapper类4个函数的解析
Mapper有setup(),map(),cleanup()和run()四个方法。其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处理工作,cleanup()则是收尾工作如关闭文件或者执行map()后的K-V分发等。run()方法提供了setup->map->cleanup()的执行模板。
在MapReduce中,Mapper从一个输入分片中读取数据,然后经过Shuffle and Sort阶段,分发数据给Reducer,在Map端和Reduce端我们可能使用设置的Combiner进行合并,这在Reduce前进行。Partitioner控制每个K-V对应该被分发到哪个reducer[我们的Job可能有多个reducer],Hadoop默认使用HashPartitioner,HashPartitioner使用key的hashCode对reducer的数量取模得来。
protected void setup(Mapper.Context context) throws IOException,InterruptedException //Called once at the beginning of the task
protected void cleanup(Mapper.Context context)throws IOException,InterruptedException //Called once at the end of the task.
protected void map(KEYIN key, VALUEIN value Mapper.Context context)throws IOException,InterruptedException
{
context.write((KEYOUT) key,(VALUEOUT) value);
}
//Called once for each key/value pair in the input split. Most applications should override this, but the default is the identity function.
public void run(Mapper.Context context)throws IOException,InterruptedException
{
setup(context);
while(context.nextKeyValue())
{
map(context.getCurrentKey(),context.getCurrentValue(),context)
}
cleanup(context);
}
-
//Expert users can override this method for more complete control over the execution of the Mapper.
执行顺序:setup ---> map/run ----> cleanup
Mapper的三个子类,它们位于src\mapred\org\apache\hadoop\mapreduce\lib\map中(详解http://blog.csdn.net/posa88/article/details/7901304)
1、TokenCounterMapper
2、InverseMapper
3、MultithreadedMapper
同理在Reducer类中也存在4个函数
protected void setup(Mapper.Context context) throws IOException,InterruptedException //Called once at the beginning of the task
protected void cleanup(Mapper.Context context)throws IOException,InterruptedException //Called once at the end of the task.
protected void reduce(KEYIN key, VALUEIN value Reducer.Context context)throws IOException,InterruptedException
{
for(VALUEIN value: values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
}
//This method is called once for each key. Most applications will define their reduce class by overriding this method. The default implementation is an identity function.
-
public void run(Reducer.Context context)throws IOException,InterruptedException
-
{
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
// If a back up store is used, reset it
((ReduceContext.ValueIterator)
(context.getValues().iterator())).resetBackupStore();
}
cleanup(context);
}
}
//Advanced application writers can use therun(org.apache.hadoop.mapreduce.Reducer.Context)
method to control how the reduce task works
执行顺序:setup ---> map/run ----> cleanup