Apache Spark-1.0.0浅析(四):资源调度——Stage划分和提交

回到dagScheduler.runJob,submit提交作业返回waiter,waiter.awaitResult阻塞线程,判断Job是否执行成功

def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: String,
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit,
      properties: Properties = null)
  {
    val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)
    waiter.awaitResult() match {
      case JobSucceeded => {}
      case JobFailed(exception: Exception) =>
        logInfo("Failed to run " + callSite)
        throw exception
    }
  }

DAGScheduler中submitJob如下,submitJob中实例化JobWaiter最后返回,通过eventProcessActor发送JobSubmitted消息

def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: String,
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit,
      properties: Properties = null): JobWaiter[U] =
  {
    // Check to make sure we are not launching a task on a partition that does not exist.
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessActor ! JobSubmitted(
      jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, properties)
    waiter
  }

receive接收JobSubmitted消息,执行dagScheduler.handleJobSubmitted

/**
   * The main event loop of the DAG scheduler.
   */
  def receive = {
    case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
        listener, properties)

    case StageCancelled(stageId) =>
      dagScheduler.handleStageCancellation(stageId)

    case JobCancelled(jobId) =>
      dagScheduler.handleJobCancellation(jobId)

    case JobGroupCancelled(groupId) =>
      dagScheduler.handleJobGroupCancelled(groupId)

    case AllJobsCancelled =>
      dagScheduler.doCancelAllJobs()

    case ExecutorAdded(execId, host) =>
      dagScheduler.handleExecutorAdded(execId, host)

    case ExecutorLost(execId) =>
      dagScheduler.handleExecutorLost(execId)

    case BeginEvent(task, taskInfo) =>
      dagScheduler.handleBeginEvent(task, taskInfo)

    case GettingResultEvent(taskInfo) =>
      dagScheduler.handleGetTaskResult(taskInfo)

    case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
      dagScheduler.handleTaskCompletion(completion)

    case TaskSetFailed(taskSet, reason) =>
      dagScheduler.handleTaskSetFailed(taskSet, reason)

    case ResubmitFailedStages =>
      dagScheduler.resubmitFailedStages()
  }

handleJobSubmitted中,通过newStage创建finalStage,如果finalStage不为空,则以此finalStage继续实例化ActiveJob。判断job是否为short actions,是则本地执行,否则存入jobId和ActiveJob的对应关系,增加activeJobs,然后增加resultStage和Job对应关系,SparkListenerJobStart发送到listenerBus消息队列,执行SubmitStage提交Job,最后还需要submitWaitingStages

private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      allowLocal: Boolean,
      callSite: String,
      listener: JobListener,
      properties: Properties = null)
  {
    var finalStage: Stage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = newStage(finalRDD, partitions.size, None, jobId, Some(callSite))
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
    if (finalStage != null) {
      val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)
      clearCacheLocs()
      logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format(
        job.jobId, callSite, partitions.length, allowLocal))
      logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")")
      logInfo("Parents of final stage: " + finalStage.parents)
      logInfo("Missing parents: " + getMissingParentStages(finalStage))
      if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) {
        // Compute very short actions like first() or take() with no parent stages locally.
        listenerBus.post(SparkListenerJobStart(job.jobId, Array[Int](), properties))
        runLocally(job)
      } else {
        jobIdToActiveJob(jobId) = job
        activeJobs += job
        resultStageToJob(finalStage) = job
        listenerBus.post(SparkListenerJobStart(job.jobId, jobIdToStageIds(jobId).toArray,
          properties))
        submitStage(finalStage)
      }
    }
    submitWaitingStages()
  }

首先,看一下newStage,用以创建新的Stage,注释中说明了如果需要创建shuffle map stages必须用newOrStage

/**
   * Create a Stage -- either directly for use as a result stage, or as part of the (re)-creation
   * of a shuffle map stage in newOrUsedStage.  The stage will be associated with the provided
   * jobId. Production of shuffle map stages should always use newOrUsedStage, not newStage
   * directly.
   */
  private def newStage(
      rdd: RDD[_],
      numTasks: Int,
      shuffleDep: Option[ShuffleDependency[_,_]],
      jobId: Int,
      callSite: Option[String] = None)
    : Stage =
  {
    val id = nextStageId.getAndIncrement()
    val stage =
      new Stage(id, rdd, numTasks, shuffleDep, getParentStages(rdd, jobId), jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stageToInfos(stage) = StageInfo.fromStage(stage)
    stage
  }

newStage中实例化Stage类,参数中包含了stage的id,numTasks,shuffleDep,parents等,而且stage分为两类:shuffle map stage和result stage

/**
 * A stage is a set of independent tasks all computing the same function that need to run as part
 * of a Spark job, where all the tasks have the same shuffle dependencies. Each DAG of tasks run
 * by the scheduler is split up into stages at the boundaries where shuffle occurs, and then the
 * DAGScheduler runs these stages in topological order.
 *
 * Each Stage can either be a shuffle map stage, in which case its tasks' results are input for
 * another stage, or a result stage, in which case its tasks directly compute the action that
 * initiated a job (e.g. count(), save(), etc). For shuffle map stages, we also track the nodes
 * that each output partition is on.
 *
 * Each Stage also has a jobId, identifying the job that first submitted the stage.  When FIFO
 * scheduling is used, this allows Stages from earlier jobs to be computed first or recovered
 * faster on failure.
 */
private[spark] class Stage(
    val id: Int,
    val rdd: RDD[_],
    val numTasks: Int,
    val shuffleDep: Option[ShuffleDependency[_,_]],  // Output shuffle if stage is a map stage
    val parents: List[Stage],
    val jobId: Int,
    callSite: Option[String])
  extends Logging

在Stage类中,parents的获得是通过getParentStages得到的,如果是shuffleDep,则getShuffleMapStage,否则,前溯上一个RDD

/**
   * Get or create the list of parent stages for a given RDD. The stages will be assigned the
   * provided jobId if they haven't already been created with a lower jobId.
   */
  private def getParentStages(rdd: RDD[_], jobId: Int): List[Stage] = {
    val parents = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    def visit(r: RDD[_]) {
      if (!visited(r)) {
        visited += r
        // Kind of ugly: need to register RDDs with the cache here since
        // we can't do it in its constructor because # of partitions is unknown
        for (dep <- r.dependencies) {
          dep match {
            case shufDep: ShuffleDependency[_,_] =>
              parents += getShuffleMapStage(shufDep, jobId)
            case _ =>
              visit(dep.rdd)
          }
        }
      }
    }
    visit(rdd)
    parents.toList
  }

getShuffleMapStage如下,调用NewOrUsedStage来创建shuffle map stage

/**
   * Get or create a shuffle map stage for the given shuffle dependency's map side.
   * The jobId value passed in will be used if the stage doesn't already exist with
   * a lower jobId (jobId always increases across jobs.)
   */
  private def getShuffleMapStage(shuffleDep: ShuffleDependency[_,_], jobId: Int): Stage = {
    shuffleToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) => stage
      case None =>
        val stage =
          newOrUsedStage(shuffleDep.rdd, shuffleDep.rdd.partitions.size, shuffleDep, jobId)
        shuffleToMapStage(shuffleDep.shuffleId) = stage
        stage
    }
  }

如此,将Job依据RDD之间的依赖关系,stage划分完成

进入submitStage,首先通过stage获得对应jobID,判断jobID是否存在,不存在abortStage,存在判断该stage是否WaitingStage、runningStage、failedStage,首先获得missingParentStages,如果不存在missing依赖,执submitMissingTasks,准备提交依赖tasks,如果存在,则递归调用submitStage,并将该Stage加入到waitingStages,直到初始stage,最终程序执行submitMissingTasks提交tasks

/** Submits stage, but first recursively submits any missing parents. */
  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing == Nil) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          submitMissingTasks(stage, jobId.get)
          runningStages += stage
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id)
    }
  }

getMissingParentStages如下,遍历找到所有父Stages

private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        if (getCacheLocs(rdd).contains(Nil)) {
          for (dep <- rdd.dependencies) {
            dep match {
              case shufDep: ShuffleDependency[_,_] =>
                val mapStage = getShuffleMapStage(shufDep, stage.jobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
              case narrowDep: NarrowDependency[_] =>
                visit(narrowDep.rdd)
            }
          }
        }
      }
    }
    visit(stage.rdd)
    missing.toList
  }

最后,看一下submitWaitingStages,其作用在于检查等待或失败的stages,重新submitStage提交,每个事件循环都会执行

/**
   * Check for waiting or failed stages which are now eligible for resubmission.
   * Ordinarily run on every iteration of the event loop.
   */
  private def submitWaitingStages() {
    // TODO: We might want to run this less often, when we are sure that something has become
    // runnable that wasn't before.
    logTrace("Checking for newly runnable parent stages")
    logTrace("running: " + runningStages)
    logTrace("waiting: " + waitingStages)
    logTrace("failed: " + failedStages)
    val waitingStagesCopy = waitingStages.toArray
    waitingStages.clear()
    for (stage <- waitingStagesCopy.sortBy(_.jobId)) {
      submitStage(stage)
    }
  }

至此,Stage划分提交完成。

 

END

转载于:https://www.cnblogs.com/kevingu/p/4678797.html

你可能感兴趣的:(Apache Spark-1.0.0浅析(四):资源调度——Stage划分和提交)