matlab练习程序(模拟退火SA)

模拟退火首先从某个初始候选解开始,当温度大于0时执行循环。

在循环中,通过随机扰动产生一个新的解,然后求得新解和原解之间的能量差,如果差小于0,则采用新解作为当前解。

如果差大于0,则采用一个当前温度与能量差成比例的概率来选择是否接受新解。温度越低,接受的概率越小,差值越大,同样接受概率越小。

是否接受的概率用此公式计算:p=exp(-ΔE/T)。这里ΔE为新解与原解的差,T为当前的温度。

由于温度随迭代次数逐渐降低,因此获得一个较差的解的概率较小。

典型的模拟退火算法还使用了蒙特卡洛循环,在温度降低之前,通过多次迭代来找到当前温度下比较好的解。

这里使用模拟退火解旅行商问题,因为这个问题本身是一个NP难问题,所以也就求不到最优解,不过应该可以求得一个比较好的解,然后再手工优化。

具体到程序中,这里的随机扰动就是随机置换两个城市的位置,能量就是旅行商路线的总长度。

算法结果如下:

初始旅行商路线:

matlab练习程序(模拟退火SA)_第1张图片

最终求得的旅行商路线:

matlab练习程序(模拟退火SA)_第2张图片

每次迭代求得的旅行距离:

matlab练习程序(模拟退火SA)_第3张图片

matlab代码如下:

main.m

clear all;close all;clc

n=20;                   %城市个数
temperature=100*n;      %初始温度
iter=100;               %内部蒙特卡洛循环迭代次数

%随机初始化城市坐标
city=struct([]);
for i=1:n
    city(i).x=floor(1+100*rand()); 
    city(i).y=floor(1+100*rand());
end

l=1;                            %统计迭代次数
len(l)=computer_tour(city,n);   %每次迭代后的路线长度  
netplot(city,n);                %初始旅行路线

while temperature>0.001     %停止迭代温度
    
    for i=1:iter     %多次迭代扰动,一种蒙特卡洛方法,温度降低之前多次实验
        len1=computer_tour(city,n);         %计算原路线总距离
        tmp_city=perturb_tour(city,n);      %产生随机扰动
        len2=computer_tour(tmp_city,n);     %计算新路线总距离
        
        delta_e=len2-len1;  %新老距离的差值,相当于能量
        if delta_e<0        %新路线好于旧路线,用新路线代替旧路线
            city=tmp_city;
        else                        %温度越低,越不太可能接受新解;新老距离差值越大,越不太可能接受新解
            if exp(-delta_e/temperature)>rand() %以概率选择是否接受新解
                city=tmp_city;      %可能得到较差的解
            end
        end        
    end
    l=l+1;
    len(l)=computer_tour(city,n);   %计算新路线距离
    temperature=temperature*0.99;   %温度不断下降
  
end  
figure;
netplot(city,n);    %最终旅行路线

figure;
plot(len)  

computer_tour.m

function len=computer_tour(city,n)   %计算路线总长度,每个城市只计算和下家城市之间的距离。
    len=0;
    for i=1:n-1
        len=len+sqrt((city(i).x-city(i+1).x)^2+(city(i).y-city(i+1).y)^2);        
    end
    len=len+sqrt((city(n).x-city(1).x)^2+(city(n).y-city(1).y)^2);
end

perturb_tour.m

function city=perturb_tour(city,n)  
    
    %随机置换两个不同的城市的坐标
    %产生随机扰动
    p1=floor(1+n*rand());
    p2=floor(1+n*rand());

    while p1==p2
        p1=floor(1+n*rand());
        p2=floor(1+n*rand());    
    end
    
    tmp=city(p1);
    city(p1)=city(p2);
    city(p2)=tmp;

end

netplot.m

function netplot(city,n)        %连线各城市,将路线画出来
    hold on;
    for i=1:n-1
        plot(city(i).x,city(i).y,'r*');  
        line([city(i).x city(i+1).x],[city(i).y city(i+1).y]);  %只连线当前城市和下家城市     
    end

    plot(city(n).x,city(n).y,'r*');  
    line([city(n).x city(1).x],[city(n).y city(1).y]);     %最后一家城市连线第一家城市
    hold off;
end

 

转载于:https://www.cnblogs.com/tiandsp/p/3167785.html

你可能感兴趣的:(matlab练习程序(模拟退火SA))