Multinoulli distribution

https://www.statlect.com/probability-distributions/multinoulli-distribution3

 

Multinoulli distribution

The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have K outcomes and you denote by $X_{i} $ a random variable that takes value 1 if you obtain the i-th outcome and 0 otherwise, then the random vector X defined as[eq1]is a Multinoulli random vector. In other words, when the i-th outcome is obtained, the i-th entry of the Multinoulli random vector X takes value 1, while all other entries take value 0.

In what follows the probabilities of the K possible outcomes will be denoted by [eq2].

Definition

The distribution is characterized as follows.

Definition Let X be a Kx1 discrete random vector. Let the support of X be the set of Kx1 vectors having one entry equal to 1 and all other entries equal to 0:[eq3]Let $p_{1}$, ..., $p_{K}$ be K strictly positive numbers such that[eq4]We say that X has a Multinoulli distribution with probabilities $p_{1}$, ..., $p_{K}$ if its joint probability mass function is[eq5]

If you are puzzled by the above definition of the joint pmf, note that when [eq6] and $x_{i}=1$ because the i-th outcome has been obtained, then all other entries are equal to 0 andMultinoulli distribution_第1张图片

Expected value

The expected value of X is[eq8]where the Kx1 vector p is defined as follows:[eq9]

Proof

Covariance matrix

The covariance matrix of X is[eq11]where Sigma is a $K imes K$ matrix whose generic entry is[eq12]

Proof

Joint moment generating function

The joint moment generating function of X is defined for any $tin U{211d} ^{K}$:[eq16]

Proof

Joint characteristic function

The joint characteristic function of X is[eq19]

Proof

你可能感兴趣的:(Multinoulli distribution)