Fisher线性判断之matlab实现

关于先行判断和Fisher变换的理论知识,这里推荐一个非常好的博客:https://blog.csdn.net/eternity1118_/article/details/51248471

在了解了理论后,知道只要求出w与w0就可以,而且已经可以根据公式求出,所以实现起来也比较简单。但这种方式只适用于线性可分,对于线性不可分,可以考虑用最小均方误差法。话不多说,下面看实现代码:

%% fisher线性判断
clc;clear all;
x1 = [  0.2331    1.5207    0.6499    0.7757    1.0524    1.1974
        0.2908    0.2518    0.6682    0.5622    0.9023    0.1333
       -0.5431    0.9407   -0.2126    0.0507   -0.0810    0.7315
        0.3345    1.0650   -0.0247    0.1043    0.3122    0.6655
        0.5838    1.1653    1.2653    0.8137   -0.3399    0.5152
        0.7226   -0.2015    0.4070   -0.1717   -1.0573   -0.2099
     ];
y1 = [ 2.3385    2.1946    1.6730    1.6365    1.7844    2.0155
    2.0681    2.1213    2.4797    1.5118    1.9692    1.8340
    1.8704    2.2948    1.7714    2.3939    1.5648    1.9329
    2.2027    2.4568    1.7523    1.6991    2.4883    1.7259
    2.0466    2.0226    2.3757    1.7987    2.0828    2.0798
    1.9449    2.3801    2.2373    2.1614    1.9235    2.2604
  ];
z1 = [  0.5338    0.8514    1.0831    0.4164    1.1176    0.5536
      0.6071    0.4439    0.4928    0.5901    1.0927    1.0756
      1.0072    0.4272    0.4353    0.9869    0.4841    1.0992
      1.0299    0.7127    1.0124    0.4576    0.8544    1.1275
      0.7705    0.4129    1.0085    0.7676    0.8418    0.8784
      0.9751    0.7840    0.4158    1.0315    0.7533    0.9548
   ];
 x2 =[  1.4010    1.2301    2.0814    1.1655    1.3740    1.1829
        1.7632    1.9739    2.4152    2.5890    2.8472    1.9539
        1.2500    1.2864    1.2614    2.0071    2.1831    1.7909
        1.3322    1.1466    1.7087    1.5920    2.9353    1.4664
        2.9313    1.8349    1.8340    2.5096    2.7198    2.3148
        2.0353    2.6030    1.2327    2.1465    1.5673    2.9414
      ];
y2 = [  1.0298    0.9611    0.9154    1.4901    0.8200    0.9399
        1.1405    1.0678    0.8050    1.2889    1.4601    1.4334
        0.7091    1.2942    1.3744    0.9387    1.2266    1.1833
        0.8798    0.5592    0.5150    0.9983    0.9120    0.7126
        1.2833    1.1029    1.2680    0.7140    1.2446    1.3392
        1.1808    0.5503    1.4708    1.1435    0.7679    1.1288
    ];
z2 = [  0.6210    1.3656    0.5498    0.6708    0.8932    1.4342
        0.9508    0.7324    0.5784    1.4943    1.0915    0.7644
        1.2159    1.3049    1.1408    0.9398    0.6197    0.6603
        1.3928    1.4084    0.6909    0.8400    0.5381    1.3729
        0.7731    0.7319    1.3439    0.8142    0.9586    0.7379
        0.7548    0.7393    0.6739    0.8651    1.3699    1.1458
];
   
x1_w1  = zeros(3,36);x2_w2 = zeros(3,36);
for i =1:36
   x1_w1(:,i) = [x1(i),y1(i),z1(i)];
   x2_w2(:,i) = [x2(i),y2(i),z2(i)];
end
%求均值
m1 = mean(x1_w1');m1 =m1';
m2 = mean(x2_w2');m2 =m2'; 
%S1_x1 =zeros(3,3);    S2_x2 = zeros(3,3);
%求类内离散度矩阵
%S1_x1 = cov(x1_w1')*35;S2_x2 = cov(x2_w2')*35;
%S = S1_x1 + S2_x2;% 总的离散度矩阵 越小越好
S =zeros(3,3);
for i = 1:2
    for j = 1:36
         S = S+(x1_w1(:,j)-m1)*(x1_w1(:,j)-m1)';
    end
end
%计算类间离散度,越大越好
Sb = (m1-m2)*(m1-m2)';
w = S^(-1)*(m1-m2);
m1_w = w'*m1;
m2_w = w'*m2;
w0 = -(m1_w+m2_w)/2;
test = [1,1.5,0.6;1.2,1.0,0.55;2.0,0.9,0.68;1.2,1.5,0.89;0.23,2.33,1.43];
test = test';
for i =1:5
    if(w'*test(:,i)>-w0 )
        fprintf('第%d个样本属于第1类\n',i);
    else
        fprintf('第%d个样本属于第2类\n',i);
    end
end
plot3(x1,y1,z1,'b.');hold on;plot3(x2,y2,z2,'r.');
for i =1:5
    j =3*(i-1);
     plot3(test(j+1),test(j+2),test(j+3),'k*');
     hold on;
end
[x,y] = meshgrid( -2:0.1:3 ,0.5:0.1:2.5 );
z = -(w(1)*x+w(2)*y+w0)/w(3);
mesh(x,y,z);

对于类内离散度矩阵也可以用cov函数,然后乘n-1,其中n为样本的个数。其公式为:

散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1),其中代码中是用定义求的。

其运行结果显示:

Fisher线性判断之matlab实现_第1张图片

下图是没有插入分类面的结果,其中,黑色的星代表待分类的样本。

Fisher线性判断之matlab实现_第2张图片

插入分类面:

Fisher线性判断之matlab实现_第3张图片

 

你可能感兴趣的:(模式识别)