分布式事物实现方式

事物特性(acid)

原子性(A)

所谓的原子性就是说,在整个事务中的所有操作,要么全部完成,要么全部不做,没有中间状态。对于事务在执行中发生错误,所有的操作都会被回滚,整个事务就像从没被执行过一样。

一致性(C)

事务的执行必须保证系统的一致性,就拿转账为例,A有500元,B有300元,如果在一个事务里A成功转给B50元,那么不管并发多少,不管发生什么,只要事务执行成功了,那么最后A账户一定是450元,B账户一定是350元。

隔离性(I)

所谓的隔离性就是说,事务与事务之间不会互相影响,一个事务的中间状态不会被其他事务感知。

持久性(D)

所谓的持久性,就是说一单事务完成了,那么事务对数据所做的变更就完全保存在了数据库中,即使发生停电,系统宕机也是如此。

事物隔离级别

脏读:事务T1读取到事务T2修改了但是还未提交的数据,之后事务T2又回滚其更新操作,导致事务T1读到的是脏数据。

不可重复读:事务T1读取某个数据后,事务T2对其做了修改,当事务T1再次读该数据时得到与前一次不同的值。

幻读:事务T1读取在读取某范围数据时,事务T2又插入一条数据,当事务T1再次数据这个范围数据时发现不一样了,出现了一些“幻影行”。

不可重复读和脏读的区别:脏读是某一事务读取了另一个事务未提交的脏数据,而不可重复读则是读取了前一事务提交的数据。

幻读和不可重复读的异同:都是读取了另一条已经提交的事务(这点就脏读不同),所不同的是不可重复读查询的都是同一个数据项,而幻读针对的是一批数据整体(比如数据的个数)。

分布式项目落地问题:
1.单体应用拆分为分布式系统后,进程间的通讯机制和故障处理措施变的更加复杂。
2.系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。
3.微服务数量众多,其测试、部署、监控等都变的更加困难。

分布式事物解决方案:

基于XA协议的两阶段提交方案
交易中间件与数据库通过 XA 接口规范,使用两阶段提交来完成一个全局事务, XA 规范的基础是两阶段提交协议。
第一阶段是表决阶段,所有参与者都将本事务能否成功的信息反馈发给协调者;第二阶段是执行阶段,协调者根据所有参与者的反馈,通知所有参与者,步调一致地在所有分支上提交或者回滚。

两阶段提交协议可以很好得解决分布式事务问题,它可以使用 XA 来实现,XA 它包含两个部分:事务管理器和本地资源管理器。其中本地资源管理器往往由数据库实现,比如 Oracle、DB2 这些商业数据库都实现了 XA 接口,而事务管理器作为全局的协调者,负责各个本地资源的提交和回滚。

消息中间件:消息中间件也可称作消息系统 (MQ),它本质上是一个暂存转发消息的一个中间件。在分布式应用当中,我们可以把一个业务操作转换成一个消息,比如支付宝的余额转如余额宝操作,支付宝系统执行减少余额操作之后向消息系统发一个消息,余额宝系统订阅这条消息然后进行增加账户金额操作。

RocketMQ第一阶段发送Prepared消息时,会拿到消息的地址,第二阶段执行本地事物,第三阶段通过第一阶段拿到的地址去访问消息,并修改消息的状态。

细心的你可能又发现问题了,如果确认消息发送失败了怎么办?RocketMQ会定期扫描消息集群中的事物消息,如果发现了Prepared消息,它会向消息发送端(生产者)确认,Bob的钱到底是减了还是没减呢?如果减了是回滚还是继续发送确认消息呢?RocketMQ会根据发送端设置的策略来决定是回滚还是继续发送确认消息。这样就保证了消息发送与本地事务同时成功或同时失败。

分布式事物实现方式_第1张图片
两阶段提交方案应用非常广泛,几乎所有商业OLTP数据库都支持XA协议。但是两阶段提交方案锁定资源时间长,对性能影响很大,基本不适合解决微服务事务问题。
TCC方案

TCC方案在电商、金融领域落地较多。TCC方案其实是两阶段提交的一种改进。其将整个业务逻辑的每个分支显式的分成了Try、Confirm、Cancel三个操作。Try部分完成业务的准备工作,confirm部分完成业务的提交,cancel部分完成事务的回滚。基本原理如下图所示。
分布式事物实现方式_第2张图片
事务开始时,业务应用会向事务协调器注册启动事务。之后业务应用会调用所有服务的try接口,完成一阶段准备。之后事务协调器会根据try接口返回情况,决定调用confirm接口或者cancel接口。如果接口调用失败,会进行重试。

TCC方案让应用自己定义数据库操作的粒度,使得降低锁冲突、提高吞吐量成为可能。 当然TCC方案也有不足之处,集中表现在以下两个方面:
对应用的侵入性强:业务逻辑的每个分支都需要实现try、confirm、cancel三个操作,应用侵入性较强,改造成本高。
**实现难度较大:**需要按照网络状态、系统故障等不同的失败原因实现不同的回滚策略。为了满足一致性的要求,confirm和cancel接口必须实现幂等。

基于消息的最终一致性方案
消息一致性方案是通过消息中间件保证上、下游应用数据操作的一致性。基本思路是将本地操作和发送消息放在一个事务中,保证本地操作和消息发送要么两者都成功或者都失败。下游应用向消息系统订阅该消息,收到消息后执行相应操作。
分布式事物实现方式_第3张图片
消息方案从本质上讲是将分布式事务转换为两个本地事务,然后依靠下游业务的重试机制达到最终一致性。基于消息的最终一致性方案对应用侵入性也很高,应用需要进行大量业务改造,成本较高

GTS–分布式事务解决方案
分布式事物实现方式_第4张图片
GTS的核心优势
1.性能超强
GTS通过大量创新,解决了事务ACID特性与高性能、高可用、低侵入不可兼得的问题。单事务分支的平均响应时间在2ms左右,3台服务器组成的集群可以支撑3万TPS以上的分布式事务请求。
2.应用侵入性极低
GTS对业务低侵入,业务代码最少只需要添加一行注解(@TxcTransaction)声明事务即可。业务与事务分离,将微服务从事务中解放出来,微服务关注于业务本身,不再需要考虑反向接口、幂等、回滚策略等复杂问题,极大降低了微服务开发的难度与工作量。
3.完整解决方案
GTS支持多种主流的服务框架,包括EDAS,Dubbo,Spring Cloud等。
有些情况下,应用需要调用第三方系统的接口,而第三方系统没有接入GTS。此时需要用到GTS的MT模式。GTS的MT模式可以等价于TCC模式,用户可以根据自身业务需求自定义每个事务阶段的具体行为。MT模式提供了更多的灵活性,可能性,以达到特殊场景下的自定义优化及特殊功能的实现。
4.容错能力强
GTS解决了XA事务协调器单点问题,实现真正的高可用,可以保证各种异常情况下的严格数据一致。

实现:
https://www.liangzl.com/get-article-detail-97306.html

你可能感兴趣的:(分布式,分布式事物)