lasticsearch 不只会_存储(stores)_ 文档,为了能被搜索到也会为文档添加_索引(indexes)_ ,这也是为什么我们使用结构化的 JSON 文档,而不是无结构的二进制数据。
文档中的每个字段都将被索引并且可以被查询 。
ElasticSearch检索(search) 可以做到:
在类似于 gender
或者 age
这样的字段上使用结构化查询,join_date
这样的字段上使用排序,就像SQL的结构化查询一样。
全文检索,找出所有匹配关键字的文档并按照_相关性(relevance
)_ 排序后返回结果。
以上二者兼而有之。
我们可以使用_search API来检索查询索引。
搜索API的最基础的形式是没有指定任何查询的空搜索,它简单地返回集群中所有索引下的所有文档:
GET /_search
返回的结果像这样:
{
"hits" : {
"total" : 14,
"hits" : [
{
"_index": "us",
"_type": "tweet",
"_id": "7",
"_score": 1,
"_source": {
"date": "2014-09-17",
"name": "John Smith",
"tweet": "The Query DSL is really powerful and flexible",
"user_id": 2
}
},
... 9 RESULTS REMOVED ...
],
"max_score" : 1
},
"took" : 4,
"_shards" : {
"failed" : 0,
"successful" : 10,
"total" : 10
},
"timed_out" : false
}
返回结果中最重要的部分是 hits ,它包含 total 字段来表示匹配到的文档总数,并且一个 hits 数组默认会包含所查询结果的前十个文档。
在 hits 数组中每个结果包含文档的 _index 、 _type 、 _id ,加上 _source 字段。这意味着我们可以直接从返回的搜索结果中使用整个文档。
每个结果还有一个 _score ,它衡量了文档与查询的匹配程度。默认情况下,首先返回最相关的文档结果,就是说,返回的文档是按照 _score 降序排列的。在这个例子中,我们没有指定任何查询,故所有的文档具有相同的相关性,因此对所有的结果而言 1 是中性的 _score 。
max_score 值是与查询所匹配文档的 _score 的最大值。
took 值告诉我们执行整个搜索请求耗费了多少毫秒。
_shards 部分告诉我们在查询中参与分片的总数,以及这些分片成功了多少个失败了多少个。正常情况下我们不希望分片失败,但是分片失败是可能发生的。如果我们遭遇到一种灾难级别的故障,在这个故障中丢失了相同分片的原始数据和副本,那么对这个分片将没有可用副本来对搜索请求作出响应。假若这样,Elasticsearch 将报告这个分片是失败的,但是会继续返回剩余分片的结果。
timed_out 值告诉我们查询是否超时。默认情况下,搜索请求不会超时。如果低响应时间比完成结果更重要,你可以指定 timeout 为 10 或者 10ms(10毫秒),或者 1s(1秒):
GET /_search?timeout=10ms
在请求超时之前,Elasticsearch 将会返回已经成功从每个分片获取的结果。
经常的情况下,你想在一个或多个特殊的索引中进行搜索。我们可以通过在URL中指定特殊的索引达到这种效果,如下所示:
/gb,us/doc/_search
在 gb 和 us 索引中查询
/_all/_search
在所有的索引中搜索
查询表达式(Query DSL)是一种非常灵活又富有表现力的 查询语言。 Elasticsearch 使用它可以以简单的 JSON 接口来展现 Lucene 功能的绝大部分。在你的应用中,你应该用它来编写你的查询语句。它可以使你的查询语句更灵活、更精确、易读和易调试。
要使用这种查询表达式,只需将查询语句传递给 query 参数:
GET /_search
{
"query": YOUR_CONDITION_HERE
}
例如 match_all 全匹配查询, 正如其名字一样,匹配所有文档:
GET /_search
{
"query": {
"match_all": {}
}
}
查询语句的结构
一个查询语句的典型结构:
{
QUERY_NAME: {
ARGUMENT: VALUE,
ARGUMENT: VALUE,...
}
}
如果是针对某个字段,那么它的结构如下:
{
QUERY_NAME: {
FIELD_NAME: {
ARGUMENT: VALUE,
ARGUMENT: VALUE,...
}
}
}
举个例子,你可以使用 match 查询语句 来查询 tweet 字段中包含 elasticsearch 的 tweet:
{
"match": {
"tweet": "elasticsearch"
}
}
完整的查询请求如下:
GET /_search
{
"query": {
"match": {
"tweet": "elasticsearch"
}
}
}
和 SQL 使用 LIMIT 关键字返回单个 page 结果的方法相同,Elasticsearch 接受 from 和 size 参数:
关键字 | 含义 |
---|---|
size | 显示应该返回的结果数量,默认是 10 |
from | 显示应该跳过的初始结果数量,默认是 0 |
如果每页展示 5 条结果,从第10条纪录开始:
GET _search
{
"query": {
"match_all": {}
},
"size": 5,
"from": 10
}
考虑到分页过深以及一次请求太多结果的情况,结果集在返回之前先进行排序。 但请记住一个请求经常跨越多个分片,每个分片都产生自己的排序结果,这些结果需要进行集中排序以保证整体顺序是正确的。
在分布式系统中深度分页
理解为什么深度分页是有问题的,我们可以假设在一个有 5 个主分片的索引中搜索。 当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。
现在假设我们请求第 1000 页—结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。 然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。
可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。这就是 web 搜索引擎对任何查询都不要返回超过 1000 个结果的原因。
查询语句(Query clauses) 就像一些简单的组合块,这些组合块可以彼此之间合并组成更复杂的查询。这些语句可以是如下形式:
叶子语句(Leaf clauses) (就像 match 语句) 被用于将查询字符串和一个字段(或者多个字段)对比。
复合(Compound) 语句 主要用于 合并其它查询语句。 比如,一个 bool
语句 允许在你需要的时候组合其它语句,无论是 must
匹配、 must_not
匹配还是 should
匹配,同时它可以包含不评分的过滤器(filters
):
{
"bool": {
"must": { "match": { "tweet": "elasticsearch" }},
"must_not": { "match": { "name": "mary" }},
"should": { "match": { "tweet": "full text" }},
"filter": { "range": { "age" : { "gt" : 30 }} }
}
}
一条复合语句可以合并 任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
例如,以下查询是为了找出信件正文包含 business opportunity 的星标邮件,或者在收件箱正文包含 business opportunity 的非垃圾邮件:
{
"bool": {
"must": { "match": { "email": "business opportunity" }},
"should": [
{ "match": { "starred": true }},
{ "bool": {
"must": { "match": { "folder": "inbox" }},
"must_not": { "match": { "spam": true }}
}}
],
"minimum_should_match": 1
}
}
一条复合语句可以将多条语句 — 叶子语句和其它复合语句 — 合并成一个单一的查询语句。