【目标追踪】三帧差法原理及实现

三帧差法原理及实现

  • (一)帧差法原理及实现:
  • (二)帧差法存在的问题:
  • (三)三帧差法的原理:
  • (四)三帧差法的实现代码:
  • (五)视频中的目标追踪效果:

(一)帧差法原理及实现:

这里可以看一下我的这篇博客,这里就不赘述了:【目标追踪】python帧差法原理及其实现

(二)帧差法存在的问题:

运动物体本身颜色相近时,会出现较大的空洞。

位置变化缓慢时,难以检测到目标。

对光线非常敏感。

(三)三帧差法的原理:

【目标追踪】三帧差法原理及实现_第1张图片

三帧差法的关键是,不再仅仅采用相邻的两帧图片作差查找运动目标,而是在相邻三帧图片的两张帧差图中取“与”操作,即:
在这里插入图片描述

(四)三帧差法的实现代码:

(具体处理和代码解析还是推荐看一下我的上一篇博客:【目标追踪】python帧差法原理及其实现)

代码:

import cv2
import numpy as np
from nms import py_cpu_nms
from time import sleep


class Detector(object):

    def __init__(self, name='my_video', frame_num=10, k_size=7, color=(0, 255, 0)):

        self.name = name

        self.color = color

        self.nms_threshold = 0.3

        self.time = 1/frame_num  # 频率

        self.es = cv2.getStructuringElement(
            cv2.MORPH_ELLIPSE, (k_size, k_size))

    def catch_video(self, video_index=0, k_size=7,
                    iterations=3, threshold=20, bias_num=1,
                    min_area=360, show_test=True, nms=True,
                    logical='or'):

        # video_index:摄像头索引(数字)或者视频路径(字符路径)
        # k_size:中值滤波的滤波器大小
        # iteration:腐蚀+膨胀的次数,0表示不进行腐蚀和膨胀操作
        # threshold:二值化阙值
        # bias_num:计算帧差图时的帧数差
        # min_area:目标的最小面积
        # show_test:是否显示二值化图片
        # nms:是否进行非极大值抑制
        # logical:三帧差取or或and

        logical = logical.lower()

        if not bias_num > 0:
            raise Exception('bias_num must > 0')

        if isinstance(video_index, str):
            is_camera = False
            # 如果是视频,则需要调整帧率
        else:
            is_camera = True

        cap = cv2.VideoCapture(video_index)  # 创建摄像头识别类

        if not cap.isOpened():
            # 如果没有检测到摄像头,报错
            raise Exception('Check if the camera is on.')

        frame_num = 0

        previous = []

        while cap.isOpened():

            catch, frame = cap.read()  # 读取每一帧图片

            if not catch:

                raise Exception('Unexpected Error.')

            if frame_num < bias_num:    
                value = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                previous = [value]*bias_num

                frame_num += 1

            raw = frame.copy()

            gray1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            gray1 = cv2.absdiff(gray1, previous[0])

            gray1 = cv2.medianBlur(gray1, k_size)

            _, mask1 = cv2.threshold(
                gray1, threshold, 255, cv2.THRESH_BINARY)

            gray2 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            gray2 = cv2.absdiff(gray2, previous[1])

            gray2 = cv2.medianBlur(gray2, k_size)

            _, mask2 = cv2.threshold(
                gray2, threshold, 255, cv2.THRESH_BINARY)

            if logical == 'or':
                mask = (np.logical_or(mask1, mask2) + 0)
            elif logical == 'and':
                mask = (np.logical_and(mask1, mask2) + 0)
            else:
                raise Exception('Logical must be \'OR\' or \'AND\'')
            mask = (mask * 255).astype(np.uint8)

            mask = cv2.dilate(mask, self.es, iterations)
            mask = cv2.erode(mask, self.es, iterations)

            _, cnts, _ = cv2.findContours(
                mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            bounds = self.nms_cnts(cnts, mask, min_area, nms=nms)

            for b in bounds:

                x, y, w, h = b

                thickness = (w*h)//min_area

                thickness = thickness if thickness <= 3 else 3
                thickness = thickness if thickness >= 1 else 1

                cv2.rectangle(frame, (x, y), (x+w, y+h), self.color, thickness)

            if not is_camera:

                sleep(self.time)

            cv2.imshow(self.name, frame)  # 在window上显示图片
            if show_test:
                cv2.imshow(self.name+'_frame', mask)  # 边界

            value = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
            previous = self.pop(previous, value)

            cv2.waitKey(10)

            if cv2.getWindowProperty(self.name, cv2.WND_PROP_AUTOSIZE) < 1:
                # 点x退出
                break

            if show_test and cv2.getWindowProperty(self.name+'_frame', cv2.WND_PROP_AUTOSIZE) < 1:
                # 点x退出
                break

        # 释放摄像头
        cap.release()
        cv2.destroyAllWindows()

    def nms_cnts(self, cnts, mask, min_area, nms=True):
        # 对检测到的边界框使用非极大值抑制
        bounds = [cv2.boundingRect(
            c) for c in cnts if cv2.contourArea(c) > min_area]

        if len(bounds) == 0:
            return []

        if not nms:
            return bounds


        scores = [self.calculate(b, mask) for b in bounds]

        bounds = np.array(bounds)

        scores = np.expand_dims(np.array(scores), axis=-1)

        keep = py_cpu_nms(np.hstack([bounds, scores]), self.nms_threshold)

        return bounds[keep]

    def calculate(self, bound, mask):

        x, y, w, h = bound

        area = mask[y:y+h, x:x+w]

        pos = area > 0
        pos = pos.astype(np.float)
        # 得分应与检测框大小也有关系

        score = np.sum(pos)/(w*h)

        return score

    def pop(self, l, value):

        l.pop(0)
        l.append(value)

        return l


if __name__ == "__main__":

    detector = Detector(name='test')

    detector.catch_video('./test.avi', bias_num=2, iterations=1,
                         k_size=5, show_test=True, min_area=360, nms=False)

(五)视频中的目标追踪效果:

你可能感兴趣的:(运动目标检测)