- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- 使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割
编程日记✧
智能医疗pytorch人工智能python计算机视觉图像处理深度学习健康医疗
代码:lee-zq/3DUNet-Pytorch:3DUNetimplementedwithpytorch(github.com)文章<cicek16miccai.pdf(uni-freiburg.de)3DU-Net:LearningDenseVolumetricSegmentation
- 目标检测:Cascade R-CNN: Delving into High Quality Object Detection - 2017【方法解读】
智维探境
AI与SLAM论文解析目标检测cnnCascadeR-CNN
查看新版本论文:目标检测:CascadeR-CNN:HighQualityObjectDetectionandInstanceSegmentation-2019【方法解读】目录摘要:1.引言2.相关工作3.对象检测3.1.边界框回归3.2.分类3.3.检测质量4.级联R-CNN4.1.级联边界框回归4.2.级联检测摘要:在目标检测中,需要一个交并比(IoU)阈值来定义正样本和负样本。使用低IoU阈
- 内存分页、内存分段的区别
秋夫人
java前端数据库操作系统
内存分页(Paging)和内存分段(Segmentation)是操作系统用于内存管理的两种技术。它们都旨在提高内存的使用效率,但实现方式和目的有所不同。内存分页(Paging)基本概念:内存分页是将物理内存划分为固定大小的块,称为“页”(Page),相应地,逻辑内存(即进程空间)也被划分为同样大小的“页”。操作系统维护一个页表来记录虚拟页和物理页帧之间的映射关系。目的:分页的主要目的是实现虚拟内存
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- VisionLLaMA: A Unified LLaMA Interface for Vision Tasks
liferecords
LLMllama深度学习人工智能机器学习自然语言处理算法
VisionLLaMA:AUnifiedLLaMAInterfaceforVisionTasks相关链接:arxivgithub关键字:VisionLLaMA、visiontransformers、imagegeneration、imageclassification、semanticsegmentation摘要大型语言模型(LLMs)通常基于Transformer架构来处理文本输入。例如,LLa
- 【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】09Segmentation分割1过分割与欠分割找一个合适的分割方法过分割:分割得太细自底向上的方法无监督的自底向上:基于像素的自顶向下:从语义的角度2人是如何感知世界的人会感觉下面的线比上面的线长人的感知:先感知部件,然后理解组合后的整体语义3分割思路临近的、颜色相似的、形状相似的、同向的、平行的、对称的、连续的、封闭的电梯上的楼层按键4把分割建模成聚类任务将像
- 云服务器frp实现http内网穿透 ssh内网穿透
Javin_Ai
系统环境搭建Linux服务器httpssh
文章目录0.下载及其相关注意事项1.frphttp和ssh穿透流程图解前言:本教程将教会您如何暴露内网的http服务到公网访问如何在远程公网ssh连接到自己家里的内网机器0.下载及其相关注意事项云服务器上使用的是frp的服务端。在安装之前首先要明确当前使用的服务器的系统信息,否则使用了不匹配的frp版本,会出现:Segmentationfault的错误。可以通过arch命令查看系统信息。archa
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- 模型 STP(市场细分、目标市场选择、品牌定位)
图王大胜
思维模型人工智能市场分析定位战略规划企业发展
系列文章主要是分享思维模型,涉及各个领域,重在提升认知。细分找目标,定位定策略。1模型STP(市场细分、目标市场选择、品牌定位)的应用1.1某化妆品公司使用STP模型制定其市场营销策略市场细分(Segmentation):该公司通过市场调研,将消费者市场根据年龄、性别、收入、皮肤类型和消费偏好等因素进行细分。目标市场选择(Targeting):基于市场细分的结果,公司选择了年轻女性作为其主要的目标
- MIA | Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medic
CodeCognizer(代码认知者)
医学图像分割人工智能
MIA|Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedicalimagesegmentation论文标题:Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedical
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 第二天 寻找了三篇深度学习综述(深度学习,目标检测,图像分割)
kim_ed33
##################ImageSegmentationUsingDeepLearning:ASurvey本文梳理了172篇相关文献。本文全面回顾了撰写本文时候的文献。包括但不限于全卷积像素标记网络(FCN),编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型和对抗环境中的生成模型;从最早的方法(阈值化,K均值聚类,分水岭)到后来(随机场,细数方法一类的)再到
- CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.泛化方法:这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。基于正则化的方法:这些方法尝试将所有图像强制到一个类似的特征空间中,通常通过最小化域特定变化等技术来实现。虽然这促进了对具有相似特征的未见过域的泛化,但它可能会限制有效表示不同风格和特征的能力。示例包括使用域对抗训练或不变特征学习的方法。基于差异的方法:这些方法不是强制同质
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- 一个奇怪的bug
chenxiaochou
bug
class类没有写默认的构造函数debug下没问题release下直接Segmentationfault(coredumped)
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- C语言特殊指针
lcannal
C语言基础jvm数据结构
1野指针概念:指向一块未知区域的指针,被称为野指针。野指针是危险的。危害:引用野指针,相当于访问了非法的内存,常常会导致段错误(segmentationfault)引用野指针,可能会破坏系统的关键数据,导致系统崩溃等严重后果产生原因:指针定义之后,未初始化指针所指向的内存,被系统回收指针越界如何防止:指针定义时,及时初始化绝不引用已被系统回收的内存确认所申请的内存边界,谨防越界2空指针很多情况下,
- 实例分割论文阅读之:《Mask Transfiner for High-Quality Instance Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能深度学习transformer
1.摘要两阶段和基于查询的实例分割方法取得了显著的效果。然而,它们的分段掩模仍然非常粗糙。在本文中,我们提出了一种高质量和高效的实例分割MaskTransfiner。我们的MaskTransfiner不是在规则的密集张量上操作,而是将图像区域分解并表示为四叉树。我们基于变压器的方法只处理检测到的容易出错的树节点,并并行地自我纠正它们的错误。虽然这些稀疏像素只占总数的一小部分,但它们对最终的掩模质量
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- 51-10 多模态论文串讲—ALBEF 论文精读
深圳季连AIgraphX
AutoGPT自动驾驶大模型自动驾驶智慧城市transformergpt-3迁移学习
今天我们就来过一下多模态的串讲,其实之前,我们也讲了很多工作了,比如说CLIP,还有ViLT,以及CLIP的那么多后续工作。多模态学习在最近几年真的是异常的火爆,那除了普通的这种多模态学习,比如说视觉问答,图文检索这些,那其实之前讲的,所有这种languageguideddetection,或者这些languageguidedsegmentation任务都是多态。而且包括最近大的这种文本图像生成,
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 【iOS ARKit】人形提取
扬帆起航&d
ios
为解决人形分离和深度估计问题,ARKit新增加了SegmentationBuffer(人体分隔缓冲区)和EstimatedDepthDataBuffer(深度估计缓冲区)两个缓冲区。人体分隔缓冲区作用类似于图形渲染管线中的StencilBuffer(模板缓冲区),用于区分人形区域与背景区域,它是一个像素级的缓冲区,用于精确地描述人形区域。人体分隔缓冲区用于标识人形区域,所以可以使用非常简单的结构,
- 论文阅读——MP-Former
じんじん
论文人工智能
MP-Former:Mask-PilotedTransformerforImageSegmentationhttps://arxiv.org/abs/2303.07336mask2former问题是:相邻层得到的掩码不连续,差别很大denoisingtraining非常有效地稳定训练时期之间的二分匹配。去噪训练的关键思想是将带噪声的GT坐标与可学习查询并行地送到Transformer解码器中,并训
- Swin-Unet: Unet-like Pure Transformer forMedical Image Segmentation(用于医学图像分割的纯U型transformer)
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能1024程序员节
本文的翻译是参考的:[Transformer]Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentation_unet-likepuretransformer-CSDN博客方便自己学习摘要:在过去的几年中,卷积神经网络(cnn)在医学图像分析方面取得了里程碑式的进展。特别是基于u型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛
- 文献翻译(BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation)
来自宇宙的曹先生
文献翻译cnntransformer人工智能
BRAU-Net++:U-ShapedHybridCNN-TransformerNetworkforMedicalImageSegmentationBRAU-Net:用于医学图像分割的U形混合CNN变换网络LibinLan,Member,IEEE,PengzhouCai,LuJiang,XiaojuanLiu,YongmeiLi,andYudongZhang,SeniorMember,IEEE摘要
- DCU-Net: Multi-scale U-Net for brain tumor segmentation
zelda2333
论文:4区2020数据集:BraTS20181.Introduction胶质瘤是发生在大脑中最常见的原发性肿瘤类型之一。它由胶质瘤细胞生长而成,可分为低级和高级胶质瘤。高等级胶质瘤(HGG)更具侵略性和恶性,预期寿命最多两年,而低等级胶质瘤(LGG)可以是良性或恶性的,生长更缓慢,预期寿命为几年[1].良性肿瘤一般在手术后恢复,恶性肿瘤因其难治性而难以治愈。它严重危害人类健康,因此,如何更好地诊断
- MMLAB的实例分割算法mmsegmentation
我爱派生
实例分割算法深度学习人工智能计算机视觉python
当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如PSP-Net、DeepLabv3、DeepLabv3+和U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。1、目前支持的算法:-[x][
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc