java BIO、NIO、AIO 学习

一、BIO、NIO、AIO 对比

名称 其他名称 JDK时间 说明 适用场景
IO 又称 BIO ( Block IO )

中文:同步阻塞式IO
JDK1.4 之前 一个线程处理一个连接,
发起和处理IO请求都是同步的
适用于连接数目比较小且固定的架构,
这种方式对服务器资源要求比较高,
并发局限于应用中,
JDK1.4以前的唯一选择,
但程序直观简单易理解。
NIO 又称 New IONIO 1.0

中文:同步非阻塞IO
Non Blocking IO
JDK1.4 开始 一个线程处理多个连接,
发起IO请求是非阻塞的,
但处理IO请求是同步的
适用于连接数目多且连接比较短
(轻操作)的架构,比如聊天服务器,
并发局限于应用中,
编程比较复杂
AIO 又称 NIO 2.0

中文:异步非阻塞IO
JDK1.7 开始 一个有效请求一个线程,
发起和处理IO请求都是异步的
用于连接数目多且连接比较长
(重操作)的架构,比如相册服务器,
充分调用OS参与并发操作,
编程比较复杂

二、IO(BIO)

在JDK1.4之前,用Java编写网络请求,都是建立一个ServerSocket,然后,客户端建立Socket时就会询问是否有线程可以处理,如果没有,要么等待,要么被拒绝。即:一个连接,要求Server对应一个处理线程。

三、 NIO(NIO 1.0)

3.1、简介

JDK 1.4中的java.nio.*包中引入新的Java I/O库,其目的是提高速度。实际上,“旧”的I/O包已经使用NIO重新实现过,即使我们不显式的使用NIO编程,也能从中受益。速度的提高在文件I/O和网络I/O中都可能会发生,但本文只讨论后者。

在JDK1.4及以后版本中提供了一套API来专门操作非阻塞I/O,由于这套API是JDK新提供的I/O API,因此,也叫New I/O,这就是包名nio的由来

这套API由三个主要的部分组成:缓冲区(Buffers)、通道(Channels)和非阻塞I/O的核心类组成。

在理解NIO的时候,需要区分,说的是New I/O还是非阻塞IO,New I/O是Java的包,NIO是非阻塞IO概念。这里讲的是后面一种。

NIO本身是基于事件驱动思想来完成的,其主要想解决的是BIO的大并发问题: 在使用同步I/O的网络应用中,如果要同时处理多个客户端请求,或是在客户端要同时和多个服务器进行通讯,就必须使用多线程来处理。也就是说,将每一个客户端请求分配给一个线程来单独处理。这样做虽然可以达到我们的要求,但同时又会带来另外一个问题。由于每创建一个线程,就要为这个线程分配一定的内存空间(也叫工作存储器),而且操作系统本身也对线程的总数有一定的限制。如果客户端的请求过多,服务端程序可能会因为不堪重负而拒绝客户端的请求,甚至服务器可能会因此而瘫痪。

NIO基于Reactor,当socket有流可读或可写入socket时,操作系统会相应的通知引用程序进行处理,应用再将流读取到缓冲区或写入操作系统。
也就是说,这个时候,已经不是一个连接就要对应一个处理线程了,而是有效的请求,对应一个线程,当连接没有数据时,是没有工作线程来处理的。

3.2、缓冲区( Buffer )

Buffer是一个对象,包含一些要写入或者读出的数据。

在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的;在写入数据时,也是写入到缓冲区中。任何时候访问NIO中的数据,都是通过缓冲区进行操作。

缓冲区实际上是一个数组,并提供了对数据结构化访问以及维护读写位置等信息。

具体的缓存区有这些:ByteBuffe、CharBuffer、 ShortBuffer、IntBuffer、LongBuffer、FloatBuffer、DoubleBuffer。他们实现了相同的接口:Buffer。

3.3、通道( Channel )

我们对数据的读取和写入要通过Channel,它就像水管一样,是一个通道。通道不同于流的地方就是通道是双向的,可以用于读、写和同时读写操作。

底层的操作系统的通道一般都是全双工的,所以全双工的Channel比流能更好的映射底层操作系统的API。

Channel主要分两大类:

  • SelectableChannel:用户网络读写
  • FileChannel:用于文件操作

后面代码会涉及的 ServerSocketChannelSocketChannel 都是 SelectableChannel的子类。

3.4、多路复用器 ( Selector )

Selector是Java NIO 编程的基础。

Selector提供选择已经就绪的任务的能力:Selector会不断轮询注册在其上的Channel,如果某个Channel上面发生读或者写事件,这个Channel就处于就绪状态,会被Selector轮询出来,然后通过SelectionKey可以获取就绪Channel的集合,进行后续的I/O操作。

一个Selector可以同时轮询多个Channel,因为JDK使用了epoll()代替传统的select实现,所以没有最大连接句柄1024/2048的限制。所以,只需要一个线程负责Selector的轮询,就可以接入成千上万的客户端。

四、AIO(NIO 2.0)

与NIO不同,操作系统负责处理内核区/用户区的内存数据迁移和真正的IO操作,应用程序只须直接调用API的read或write方法即可。这两种方法均为异步的,对于读操作而言,
当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,并通知应用程序;
对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序。
即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。

在JDK1.7中,这部分内容被称作NIO.2,主要在java.nio.channels包下增加了下面四个异步通道:

  • AsynchronousSocketChannel
  • AsynchronousServerSocketChannel
  • AsynchronousFileChannel
  • AsynchronousDatagramChannel

其中的read/write方法,会返回一个带回调函数的对象,当执行完读取/写入操作后,直接调用回调函数。

五、代码示例:

阻塞模式 demo1

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

import org.junit.Test;

/**
 * 阻塞模式
 * 
 * 一、使用 NIO 完成网络通信的三个核心:
 * 
 * 1. 通道(Channel):负责连接
 * 		
 *    java.nio.channels.Channel 接口:
 * 		|--SelectableChannel
 * 			|--SocketChannel
 * 			|--ServerSocketChannel
 * 			|--DatagramChannel
 * 
 * 			|--Pipe.SinkChannel
 * 			|--Pipe.SourceChannel
 * 
 * 2. 缓冲区(Buffer):负责数据的存取
 * 
 * 3. 选择器(Selector):是 SelectableChannel 的多路复用器。用于监控 SelectableChannel 的 IO 状况
 * 
*/
public class Test1BlockingNIO { //客户端 @Test public void client() throws IOException{ //1. 获取通道 SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898)); FileChannel inChannel = FileChannel.open(Paths.get("1.jpg"), StandardOpenOption.READ); //2. 分配指定大小的缓冲区 ByteBuffer buf = ByteBuffer.allocate(1024); //3. 读取本地文件,并发送到服务端 while(inChannel.read(buf) != -1){ buf.flip(); sChannel.write(buf); buf.clear(); } //4. 关闭通道 inChannel.close(); sChannel.close(); } //服务端 @Test public void server() throws IOException{ //1. 获取通道 ServerSocketChannel ssChannel = ServerSocketChannel.open(); FileChannel outChannel = FileChannel.open(Paths.get("2.jpg"), StandardOpenOption.WRITE, StandardOpenOption.CREATE); //2. 绑定连接 ssChannel.bind(new InetSocketAddress(9898)); //3. 获取客户端连接的通道 SocketChannel sChannel = ssChannel.accept(); //4. 分配指定大小的缓冲区 ByteBuffer buf = ByteBuffer.allocate(1024); //5. 接收客户端的数据,并保存到本地 while(sChannel.read(buf) != -1){ buf.flip(); outChannel.write(buf); buf.clear(); } //6. 关闭通道 sChannel.close(); outChannel.close(); ssChannel.close(); } }

阻塞模式 demo2

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

import org.junit.Test;

/**
 * 阻塞模式
 */
public class Test2BlockingNIO {
	
	//客户端
	@Test
	public void client() throws IOException{
		SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898));
		
		FileChannel inChannel = FileChannel.open(Paths.get("1.jpg"), StandardOpenOption.READ);
		
		ByteBuffer buf = ByteBuffer.allocate(1024);
		
		while(inChannel.read(buf) != -1){
			buf.flip();
			sChannel.write(buf);
			buf.clear();
		}
		
		sChannel.shutdownOutput();
		
		//接收服务端的反馈
		int len = 0;
		while((len = sChannel.read(buf)) != -1){
			buf.flip();
			System.out.println(new String(buf.array(), 0, len));
			buf.clear();
		}
		
		inChannel.close();
		sChannel.close();
	}
	
	//服务端
	@Test
	public void server() throws IOException{
		ServerSocketChannel ssChannel = ServerSocketChannel.open();
		
		FileChannel outChannel = FileChannel.open(Paths.get("2.jpg"), StandardOpenOption.WRITE, StandardOpenOption.CREATE);
		
		ssChannel.bind(new InetSocketAddress(9898));
		
		SocketChannel sChannel = ssChannel.accept();
		
		ByteBuffer buf = ByteBuffer.allocate(1024);
		
		while(sChannel.read(buf) != -1){
			buf.flip();
			outChannel.write(buf);
			buf.clear();
		}
		
		//发送反馈给客户端
		buf.put("服务端接收数据成功".getBytes());
		buf.flip();
		sChannel.write(buf);
		
		sChannel.close();
		outChannel.close();
		ssChannel.close();
	}
}

非阻塞模式demo1

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Date;
import java.util.Iterator;
import java.util.Scanner;

import org.junit.Test;

/**
 * 非阻塞模式
 * 
 * 
 * 一、使用 NIO 完成网络通信的三个核心:
 * 
 * 1. 通道(Channel):负责连接
 * 		
 * 	   java.nio.channels.Channel 接口:
 * 			|--SelectableChannel
 * 				|--SocketChannel
 * 				|--ServerSocketChannel
 * 				|--DatagramChannel
 * 
 * 				|--Pipe.SinkChannel
 * 				|--Pipe.SourceChannel
 * 
 * 2. 缓冲区(Buffer):负责数据的存取
 * 
 * 3. 选择器(Selector):是 SelectableChannel 的多路复用器。用于监控 SelectableChannel 的 IO 状况
 * 
*/
public class Test3NonBlockingNIO { //客户端 @Test public void client() throws IOException{ //1. 获取通道 SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898)); //2. 切换非阻塞模式 sChannel.configureBlocking(false); //3. 分配指定大小的缓冲区 ByteBuffer buf = ByteBuffer.allocate(1024); //4. 发送数据给服务端 Scanner scan = new Scanner(System.in); while(scan.hasNext()){ String str = scan.next(); buf.put((new Date().toString() + "\n" + str).getBytes()); buf.flip(); sChannel.write(buf); buf.clear(); } //5. 关闭通道 sChannel.close(); } //服务端 @Test public void server() throws IOException{ //1. 获取通道 ServerSocketChannel ssChannel = ServerSocketChannel.open(); //2. 切换非阻塞模式 ssChannel.configureBlocking(false); //3. 绑定连接 ssChannel.bind(new InetSocketAddress(9898)); //4. 获取选择器 Selector selector = Selector.open(); //5. 将通道注册到选择器上, 并且指定“监听接收事件” ssChannel.register(selector, SelectionKey.OP_ACCEPT); //6. 轮询式的获取选择器上已经“准备就绪”的事件 while(selector.select() > 0){ //7. 获取当前选择器中所有注册的“选择键(已就绪的监听事件)” Iterator<SelectionKey> it = selector.selectedKeys().iterator(); while(it.hasNext()){ //8. 获取准备“就绪”的是事件 SelectionKey sk = it.next(); //9. 判断具体是什么事件准备就绪 if(sk.isAcceptable()){ //10. 若“接收就绪”,获取客户端连接 SocketChannel sChannel = ssChannel.accept(); //11. 切换非阻塞模式 sChannel.configureBlocking(false); //12. 将该通道注册到选择器上 sChannel.register(selector, SelectionKey.OP_READ); }else if(sk.isReadable()){ //13. 获取当前选择器上“读就绪”状态的通道 SocketChannel sChannel = (SocketChannel) sk.channel(); //14. 读取数据 ByteBuffer buf = ByteBuffer.allocate(1024); int len = 0; while((len = sChannel.read(buf)) > 0 ){ buf.flip(); System.out.println(new String(buf.array(), 0, len)); buf.clear(); } } //15. 取消选择键 SelectionKey it.remove(); } } } }

非阻塞模式demo2

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.util.Date;
import java.util.Iterator;
import java.util.Scanner;

import org.junit.Test;

/**
 * 非阻塞模式
 *
 */
public class Test4NonBlockingNIO2 {
	
	@Test
	public void send() throws IOException{
		DatagramChannel dc = DatagramChannel.open();
		
		dc.configureBlocking(false);
		
		ByteBuffer buf = ByteBuffer.allocate(1024);
		
		Scanner scan = new Scanner(System.in);
		
		while(scan.hasNext()){
			String str = scan.next();
			buf.put((new Date().toString() + ":\n" + str).getBytes());
			buf.flip();
			dc.send(buf, new InetSocketAddress("127.0.0.1", 9898));
			buf.clear();
		}
		
		dc.close();
	}
	
	@Test
	public void receive() throws IOException{
		DatagramChannel dc = DatagramChannel.open();
		
		dc.configureBlocking(false);
		
		dc.bind(new InetSocketAddress(9898));
		
		Selector selector = Selector.open();
		
		dc.register(selector, SelectionKey.OP_READ);
		
		while(selector.select() > 0){
			Iterator<SelectionKey> it = selector.selectedKeys().iterator();
			
			while(it.hasNext()){
				SelectionKey sk = it.next();
				
				if(sk.isReadable()){
					ByteBuffer buf = ByteBuffer.allocate(1024);
					
					dc.receive(buf);
					buf.flip();
					System.out.println(new String(buf.array(), 0, buf.limit()));
					buf.clear();
				}
			}
			
			it.remove();
		}
	}

}

你可能感兴趣的:(#,IO,NIO,Java基础)