从上一篇mast rcnn(1)文章开头处找到项目地址,下载。
《一》配置自己的环境;
Mask-RCNN的官方要求的环境是:
《二》 下载训练好的权重mask_rcnn_coco.h5
《三》coco数据集及配置pycocotools;配置pycocotools不会的百度一下,
是从git clone https://github.com/pdollar/coco下载安装包,再进行编译 cd coco/PythonAPI;make -j8;其实就是对其进行编译成.py脚本,我们项目会用到coco的一些评价指标,参数等内容。
编译好后将生成的pycocotools文件夹拷贝到此项目中,集体地址为:Mask_RCNN/samples/coco/目录下
《四》下载MSCOCO数据集:数据以及5K minval和35K valid-minus-minval的json文件(即annotation),并新建一个coco文件夹,将图片放图coco/train,coco/val,json文件放入coco/annotation,这里测试的话不会用到这些数据集,
《五》用demo.ipynb 演示,这是利用已经训练好的模型来展示对任意图像的检测和分割效果,并作可视化显示。
原demo.ipynb为.ipynb格式文件,这里我利用Jupyter Notebook 打开后将其转为了.py文件(转换后可能有一些变化,自己修改)
运行程序,如果运行出错:
from numpy.lib.arraypad import _validate_lengths ImportError: cannot import name '_validate_lengths' from 'numpy.lib.arraypad'
是由于numpy等版本太高原因造成的,没关系,在numpy的安装目录下找到arraypad.py脚本;这里我的在python3.7/site-packages/numpy/lib/arraypad.py,打开文件后,在954行后添加以下代码,保存退出,问题解决。
def _normalize_shape(ndarray, shape, cast_to_int=True):
"""
Private function which does some checks and normalizes the possibly
much simpler representations of ‘pad_width‘, ‘stat_length‘,
‘constant_values‘, ‘end_values‘.
Parameters
----------
narray : ndarray
Input ndarray
shape : {sequence, array_like, float, int}, optional
The width of padding (pad_width), the number of elements on the
edge of the narray used for statistics (stat_length), the constant
value(s) to use when filling padded regions (constant_values), or the
endpoint target(s) for linear ramps (end_values).
((before_1, after_1), ... (before_N, after_N)) unique number of
elements for each axis where `N` is rank of `narray`.
((before, after),) yields same before and after constants for each
axis.
(constant,) or val is a shortcut for before = after = constant for
all axes.
cast_to_int : bool, optional
Controls if values in ``shape`` will be rounded and cast to int
before being returned.
Returns
-------
normalized_shape : tuple of tuples
val => ((val, val), (val, val), ...)
[[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...)
((val1, val2), (val3, val4), ...) => no change
[[val1, val2], ] => ((val1, val2), (val1, val2), ...)
((val1, val2), ) => ((val1, val2), (val1, val2), ...)
[[val , ], ] => ((val, val), (val, val), ...)
((val , ), ) => ((val, val), (val, val), ...)
"""
ndims = ndarray.ndim
# Shortcut shape=None
if shape is None:
return ((None, None), ) * ndims
# Convert any input `info` to a NumPy array
shape_arr = np.asarray(shape)
try:
shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
except ValueError:
fmt = "Unable to create correctly shaped tuple from %s"
raise ValueError(fmt % (shape,))
# Cast if necessary
if cast_to_int is True:
shape_arr = np.round(shape_arr).astype(int)
# Convert list of lists to tuple of tuples
return tuple(tuple(axis) for axis in shape_arr.tolist())
def _validate_lengths(narray, number_elements):
"""
Private function which does some checks and reformats pad_width and
stat_length using _normalize_shape.
Parameters
----------
narray : ndarray
Input ndarray
number_elements : {sequence, int}, optional
The width of padding (pad_width) or the number of elements on the edge
of the narray used for statistics (stat_length).
((before_1, after_1), ... (before_N, after_N)) unique number of
elements for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for all
axes.
Returns
-------
_validate_lengths : tuple of tuples
int => ((int, int), (int, int), ...)
[[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
((int1, int2), (int3, int4), ...) => no change
[[int1, int2], ] => ((int1, int2), (int1, int2), ...)
((int1, int2), ) => ((int1, int2), (int1, int2), ...)
[[int , ], ] => ((int, int), (int, int), ...)
((int , ), ) => ((int, int), (int, int), ...)
"""
normshp = _normalize_shape(narray, number_elements)
for i in normshp:
chk = [1 if x is None else x for x in i]
chk = [1 if x >= 0 else -1 for x in chk]
if (chk[0] < 0) or (chk[1] < 0):
fmt = "%s cannot contain negative values."
raise ValueError(fmt % (number_elements,))
return normshp
demo.py中通过coco.py中的CocoConfig类来写入运行需要的参数;再通过创建模型并导入训练好的权重;最后随机从工程自带的images文件夹选取图像并进行检测和分割,也可以换成自己想要检测的图片,把想要检测的图片放图images文件夹并对下面代码稍作修改就好啦。