一步一步对照代码写出规范的TensorFlow代码,面向只会函数式Python编程的小白(如鄙人)
- Xavier初始化器:
- standard_scale:
def standard_scale(X_train, X_test): # 分别进行standard操作
- get_random_block_from_data:
def get_random_block_from_data(data, batch_size): # 随机抽取block,不放回抽样,提高数据的使用率
def __init__(接收输入参数,transfer_function=tf.nn.softplus, # 函数可以加括号也可以不加括号,不加括号就不用参数,自动适应 ): # 这里,编写把输入参数传给成员变量 # 在这里,写构建网络的代码,每一层是怎么乘起来的 # 在这运行全局初始化子图:(TensorFlow就是需要这样的(乍看起来)毫无意义的初始化) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): # 权重生成器 return all_weights def partial_fit(self, X): # fit方法一般接受cost和优化器,还有scale等训练的时候要用的东西,并开始run # fit方法对输入的X进行训练子图,一般是传入一个batch进行训练 cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X, self.scale: self.training_scale}) return cost def calc_total_cost(self, X): # cost方法根据X进行计算cost,是验证的时候计算总cost的时候用的 return self.sess.run(self.cost, feed_dict={self.x: X, self.scale: self.training_scale })
def getWeights(self): # 获取中间层的权重 return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1']) def transform(self, X): # 中间层的接口,跟如传入的X计算中间层输出,注意,hidden是第一层输出乘第二层权重, # 也就是说返回的是前两层的结果 # 因此可以说是获取中间层输出的子图(不是训练子图) return self.sess.run(self.hidden, feed_dict={self.x: X, self.scale: self.training_scale })
基本tensorflow代码写作顺序(sequenial):
1.输入层初始化
2.dropout
3.第二层x第一层....
4.loss function
5.定义优化器
5.迭代地进行训练:
优化器.run(x,y,参数表)
6.在测试集或者验证集上验证
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# from tensorflow.contrib.factorization.examples.mnist import fill_feed_dict
# 用Denosing AutoEncoder对minist进行重构实验
def xavier_init(fan_in, fan_out, const=1):
# Xavier法对各个权重进行初始化,比较适合各种激活函数
low = -const * np.sqrt(6.0 / (fan_in + fan_out))
high = const * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(), scale=0.1):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder(tf.float32)
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights
self.x = tf.placeholder(tf.float32, [None, self.n_input]) # 输入层
self.n_hidden = self.transfer(tf.add(tf.matmul( # 隐含层,输入加上噪声乘以w加b
self.x + scale * tf.random_normal((n_input,)),
self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.n_hidden,
self.weights['w2']), self.weights['b2'])
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(
self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost) # 优化器相当方便,只要输入一个cost函数就可以
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self): # 权重生成器
all_weights = dict()
all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros(self.n_hidden,
dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,
self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],
dtype=tf.float32))
return all_weights
def partial_fit(self, X):
# fit方法一般接受cost和优化器,还有scale等训练的时候要用的东西,并开始run
# fit方法对输入的X进行训练子图,一般是传入一个batch进行训练
cost, opt = self.sess.run((self.cost, self.optimizer),
feed_dict={self.x: X, self.scale: self.training_scale})
return cost
def calc_total_cost(self, X):
# cost方法根据X进行计算cost,是验证的时候计算总cost的时候用的
return self.sess.run(self.cost, feed_dict={self.x: X,
self.scale: self.training_scale
})
def transform(self, X):
# 中间层的接口,跟如传入的X计算中间层输出,注意,hidden是第一层输出乘第二层权重,
# 也就是说返回的是前两层的结果
# 因此可以说是获取中间层输出的子图(不是训练子图)
return self.sess.run(self.hidden, feed_dict={self.x: X,
self.scale: self.training_scale
})
def generate(self, hidden=None):
# 还原子图,以后这种子图在模型训练好之后,具有单独的特征提取和特征还原功能
if hidden is None:
hidden = np.random.normal(size=self.weight['b1'])
return self.sess.run(self.reconstruction,
feed_dict={self.hidden: hidden})
def reconstruct(self, X):
# 单独定义的还原子图,本质上是上面那个函数的子函数
return self.sess.run(self.reconstruction, feed_dict={self.x: X,
self.scale: self.training_scale
})
def getWeights(self):
# 获取中间层的权重
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
def standard_scale(X_train, X_test):
# 分别进行standard操作
preprocess = prep.StandardScaler().fit(X_train)
# 在训练数据上fit的scaler,在test上也可以用。
# 并且为什么不一起standard呢?因为考虑训练数据在训练的时候要有均值假设,不能一扔进去就不是均值的了
X_train = preprocess.transform(X_train)
X_test = preprocess.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
# 随机抽取block,不放回抽样,提高数据的使用率
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 200
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
n_hidden=256,
transfer_function=tf.nn.softplus,
# 函数可以加括号也可以不加括号,不加括号就不用参数,自动适应
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01)
# 每一个batch中,获取一个block,进行fit,对cost做平均每个样本的cost,累加
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_samples / batch_size)
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
cost = autoencoder.partial_fit(batch_xs)
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost = ",
"{:.9f}".format(avg_cost))
print("Total cost:" + str(autoencoder.calc_total_cost(X_test)))