[1]时钟无缝切换

时钟切换分成两种方式,普通切换去毛刺无缝切换
普通切换,就是不关心切出的时钟是否存在毛刺,这种方式电路成本小。如果时钟切换时,使用此时钟的模块电路处于非工作状态,或者模块内电路被全局复位信号reset住的,即使切出毛刺也不会导致DFF误触发,这样的模块可以选择用此种切换方式。
写法很简单assign clk_o = sel_clkb ? clkb : clka ,当sel_clkb为 1 时选择clkb,否则选择clka。不过在实际设计中,建议直接调用库里的MUX单元set_dont_touch,不要采用这里的assign写法,因为这种写法最后综合得到的可能不是MUX而是复杂组合逻辑,给前后端流程的时钟约束和分析带来不便。
无缝切换,就是切换时无毛刺时钟平稳过渡。在时钟切换中,只要出现比clka或者clkb频率更高的窄脉冲,不论是窄的高电平还是窄的低电平,都叫时钟毛刺。工作在切换后时钟clk_o下的电路模块,综合约束是在max{clka,clkb}频率下的,也就是说设计最后signoff的时候,只保证电路可以稳定工作的最高频率是max{clka,clkb},如果切换中出现更高频的时钟毛刺,电路可能出现无法预知的结果而出错。无缝切换,一般用在处于工作状态的模块需要调频或者切换时钟源,比如内部系统总线,CPU等。你刚用手机打完游戏后马上关屏听音乐,这两种场景中,CPU在满足性能前提下为了控制功耗,其工作频率会动态地从很高调至较低,此时就可能是在CPU一直处于工作状态下,通过无缝切换时钟源头实现的。
在无缝切换电路中,切换信号sel_clkb可以是任意时钟域下的信号,包括但不限于clka或者clkb域,但是sel_clkb必须是一个DFF输出 信号;clka与clkb的频率大小相位关系可以任意。无缝切换需要解决两个问题: 一是异步切换信号的跨时钟域同步问题,这里需要使用 《Verilog基本电路设计之一》 里的同步电路原理消除亚稳态; 二是同步好了的切换信号与时钟信号如何做逻辑,才能实现无毛刺。

下面写出无缝切换电路的主体部分,忽略了内部信号的定义声明等。

module clk_switch (
                rst_n,
                clka,
                clkb,
                sel_clkb,
                clk_o
                );
always @ (posedge clka or negedge rst_n)
begin
    if (!rst_n) begin
        sel_clka_d0 <= 1'b0;
        sel_clka_d1 <= 1'b0;   
         end
    else begin
        sel_clka_d0 <= (~sel_clkb) & (~sel_clkb_dly3) ;
        sel_clka_d1 <= sel_clka_d0 ;
    end
end

// part2
//always @ (posedge clka_n or negedge rst_n)
always @ (posedge clka or negedge rst_n)
begin
    if (!rst_n) begin
        sel_clka_dly1 <= 1'b0;
        sel_clka_dly2 <= 1'b0;
        sel_clka_dly3 <= 1'b0;
    end
    else begin
        sel_clka_dly1 <= sel_clka_d1;
        sel_clka_dly2 <= sel_clka_dly1 ;
        sel_clka_dly3 <= sel_clka_dly2 ;
    end
end

// part3
//always @ (posedge clkb_n or negedge rst_n)
always @ (posedge clkb or negedge rst_n)
begin
    if (!rst_n) begin
        sel_clkb_d0 <= 1'b0;
        sel_clkb_d1 <= 1'b0;
    end
    else begin
        sel_clkb_d0 <= sel_clkb & (~sel_clka_dly3) ;
        sel_clkb_d1 <= sel_clkb_d0 ;
    end
end

// part4
//always @ (posedge clkb_n or negedge rst_n)
always @ (posedge clkb or negedge rst_n)
begin
    if (!rst_n) begin
        sel_clkb_dly1 <= 1'b0;
        sel_clkb_dly2 <= 1'b0;
        sel_clkb_dly3 <= 1'b0;
    end
    else begin
        sel_clkb_dly1 <= sel_clkb_d1   ;
        sel_clkb_dly2 <= sel_clkb_dly1 ;
        sel_clkb_dly3 <= sel_clkb_dly2 ;
    end
end

// part5
clk_gate_xxx clk_gate_a ( .CP(clka), .EN(sel_clka_dly3), .Q(clka_g)  .TE(1'b0) );
clk_gate_xxx clk_gate_b ( .CP(clkb), .EN(sel_clkb_dly3), .Q(clkb_g)  .TE(1'b0) );
//assign clka_g = clka & sel_clka_dly3 ;
//assign clkb_g = clkb & sel_clkb_dly3 ;
assign clk_o = clka_g | clkb_g ;
endmodule

上面是我认为比较合理的无缝切换电路,其他切换方式跟这个会有些许出入,但基本大同小异原理是一样的。
有几点说明:
  1. 抛开注释掉的电路不看,由于part5部分直接调用库里的clock gating cell,使得整个切换电路全部只需要用到时钟上升沿,无需额外定义反向时钟,精简了DC综合的时钟约束;直接调用gating cell的 另一个好处是,前后端工具会自动检查gating cell的CP信号与EN信号的setup/hold时间,使得gating后的Q时钟输出无毛刺尖峰。TE端可以根据实际需要接上scan测试模式信号。如果使用part5部分的gating cell实现,前面的part1,2,3,4全部替换成注释掉的反相时钟也是没有问题。
  2. part2和part4部分,具体需要多少级DFF,甚至完全不要也是可以的,这就回到了《Verilog基本电路设计之一》里讨论的到底多少级DFF消除亚稳态才算合理的问题。时钟频率很低可能无所谓,如果时钟频率达到GHz,这部分建议至少保留三级DFF,因为三级DFF延时也仅仅只有3ns的时间裕度。没必要为了省这么几个DFF降低电路可靠性,在复杂IP以及大型SOC系统中,你会发现多几十个DFF,面积上可以忽略,系统可靠性和稳定性才是首要的。
  3. 如果part5部分希望使用注释掉的两行“与”逻辑实现时钟gating,此时part1与part3使用正相或者反相时钟都可以,但是必须把part2和part4部分改为注释掉的反相时钟实现,目的是初步从RTL设计上避免“与”逻辑的毛刺,同时还需要后端配合,因为很多后端工具对时钟“与”逻辑的clock gating check未必会检查。用clk下降沿拍出的en信号,再跟clk做与逻辑得到的门控时钟,在RTL仿真阶段看到的一定不会有毛刺,但是布线完成后,如果clk相对en后移,那与逻辑得到的门控时钟就有毛刺了。这就是用与逻辑做门控的缺点,由于后端工具可能不会去检查这个与门的时序关系而导致出错。但直接调用库里的gating cell,工具天然就会去检查这个时序,免去人工确认的后顾之忧。









你可能感兴趣的:(FPGA)