- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- 2024年上半年系统架构设计师论文真题
任铄
软考2024年上半年真题系统架构设计师架构设计软考2024论文范文真题
一、论大数据lambda架构大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流处理结合起来的大数据处理系统架构,其核心思想是将批处理作业和实时流处理作业分离,各自独立运行,资源互相隔离,解决传统批处理架构的延迟问题和流
- 【系统架构设计师】2024年上半年真题论文: 论大数据lambda架构(包括解题思路和素材)
数据知道
系统架构架构系统架构设计师软考高级论文
更多内容请见:备考系统架构设计师-专栏介绍和目录文章目录真题题目(2024年上半年试题1)解题思路论文素材参考真题题目(2024年上半年试题1)大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流处理结合起来的大数据处理
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 基于大模型预测的巨细胞病毒视网膜炎诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、巨细胞病毒视网膜炎概述2.1疾病定义与特点2.2流行病学分析2.3现有治疗手段综述三、大模型技术原理与应用现状3.1大模型介绍3.2在医疗领域的应用案例3.3选择大模型预测巨细胞病毒视网膜炎的原因四、术前预测与评估4.1数据收集与整理4.2大模型预测模型的构建4.3预测内容与指标4.4案例分析:术前预测实例展示五、术中方案制定
- NLP常见任务专题介绍(3)-垂直领域的聊天机器人搭建详细教程
AI专题精讲
大模型专题系列自然语言处理机器人人工智能
一、整体流程构建垂直领域的聊天机器人需要结合特定行业的需求,采用自然语言处理和机器学习等技术。以下是一个典型的构建流程及相关技术实现:需求分析:明确机器人需要解决的问题范围和功能,例如客户服务、信息查询等。数据收集与预处理:数据收集:从行业相关的网站、论坛、数据库等渠道获取大量专业领域的文本数据。数据清洗:去除广告、无意义回复等噪声数据,确保数据质量。数据标注:对文本进行意图识别和实体识别的标注,
- App Store:App数据分析与用户反馈处理教程_2024-07-19_12-35-40.Tex
chenjj4003
游戏开发数据分析数据挖掘安全xcode性能优化蓝桥杯macos
AppStore:App数据分析与用户反馈处理教程App数据分析基础数据收集与存储在App开发与运营中,数据收集是理解用户行为、优化产品功能、提升用户体验的关键步骤。数据收集通常包括用户行为数据、应用性能数据、用户反馈数据等。这些数据的收集可以通过内置的分析工具或第三方分析平台实现,如GoogleAnalytics、Mixpanel等。数据收集数据收集的核心在于定义需要跟踪的事件和指标。例如,对于
- AI学习指南RAG篇(7)-RAG知识库构建
俞兆鹏
AI学习指南ai
文章目录一、引言二、知识库构建过程1.数据收集1.1数据来源1.2示例代码2.预处理2.1数据清洗2.2示例代码2.3数据格式转换2.4示例代码3.分块3.1分块的目的3.2分块策略3.3示例代码4.向量化4.1向量化的目的4.2示例代码4.3向量数据库4.4示例代码三、总结一、引言在RAG(Retrieval-AugmentedGeneration,检索增强生成)系统中,知识库的构建是至关重要的
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- RoboVQA:机器人多模态长范围推理
三谷秋水
计算机视觉智能体大模型机器人人工智能机器学习计算机视觉深度学习语言模型
23年11月来自GoogleDeepmind的论文“RoboVQA:MultimodalLong-HorizonReasoningforRobotics”。本文提出一种可扩展、自下而上且本质多样化的数据收集方案,该方案可用于长期和中期的高级推理,与传统的狭窄自上而下的逐步收集相比,其吞吐量提高2.2倍。通过在3栋办公楼内执行任何用户请求并使用多种具身(机器人、人类、带抓取工具的人类)来收集真实数据
- 关于uni-app发布手机APP上架各应用商城,隐私政策书写方案说明
Otaku love travel
uni-app应用发布政策说明uni-app应用发布隐私政策
uni-app应用隐私政策书写与上架方案说明一、前言随着移动互联网监管日趋严格,隐私政策已成为APP上架应用商城的核心合规文件。隐私政策不仅体现开发者对用户数据的尊重,更是满足《个人信息保护法》《网络安全法》《数据安全法》等法规的法律义务。核心目标:清晰告知用户数据收集与使用规则,建立用户信任。适用对象:所有通过uni-app开发并计划上架主流应用商城(如苹果AppStore、华为应用市场、小米应
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- docker 安装ELK 8.17.3
离开水的飞鱼
dockerelk容器
ELK是指Elasticsearch、Logstash和Kibana这三个开源软件的组合。Elasticsearch是一个分布式的搜索和分析引擎,用于日志的存储,搜索,分析,查询。Logstash是一个数据收集、转换和传输工具,用于收集过滤和转换数据,然后将其发送到Elasticsearch或其他目标存储中。Kibana是一个数据可视化平台,通过与Elasticsearch的集成,提供了强大的数据
- 人脸属性分析:年龄估计_(7).数据集构建与标注
zhubeibei168
人脸识别系统架构人工智能机器学习人脸识别计算机视觉
数据集构建与标注在人脸属性分析中,数据集的构建与标注是至关重要的一步。高质量的数据集能够显著提升模型的性能和泛化能力。本节将详细介绍如何构建和标注用于年龄估计的数据集,包括数据收集、预处理、标注工具的选择以及标注标准的设定。数据收集数据收集是构建数据集的第一步。为了确保模型能够学习到不同年龄、种族、性别等因素的特征,需要从多个来源收集数据。常见的数据来源包括:1.公开数据集公开数据集是数据收集的便
- DeepSeek Coder 的依赖解析方法具体是如何实现的?
百态老人
人工智能大数据笔记
DeepSeekCoder的依赖解析方法主要通过以下步骤实现:数据收集与过滤首先,从GitHub等平台收集代码数据,并使用规则过滤掉不符合要求的代码。例如,过滤掉语法错误、可读性差或模块化低的代码,以确保数据的质量和多样性。解析文件依赖关系在这一阶段,系统会分析同一项目中代码文件之间的依赖关系。具体来说,通过一种基于拓扑排序的算法来识别这些依赖关系。这种方法不同于传统的从入度为零的节点开始的排序,
- IoT平台软件:AWS IoT二次开发_高级功能探索与实践
chenlz2007
物联网物联网awsandroid安全云计算边缘计算
高级功能探索与实践在上一节中,我们已经完成了基础功能的开发和配置,包括设备连接、数据收集和基本的规则引擎使用。接下来,我们将深入探讨AWSIoT平台的高级功能,这些功能将帮助我们构建更加复杂和高效的IoT应用。本节将涵盖以下几个方面:设备影子(DeviceShadow)设备管理和远程配置数据处理与分析安全性和认证跨服务集成1.设备影子(DeviceShadow)1.1设备影子的概念设备影子(Dev
- 使用docker安装logstash的具体方法
慢跑的平头哥
#ELKdockerlogstash
在当今数字化时代,日志管理是任何企业都必须面对的重要挑战之一。Logstash作为一个开源的数据收集引擎,可以帮助企业轻松地收集、处理和转发日志数据。而使用Docker来安装Logstash,可以让整个过程更加简单和高效。在本文中,我将详细介绍如何使用Docker来安装Logstash,让您可以快速地搭建起一个稳定且高效的日志管理系统。第一步:安装Docker首先,您需要在您的服务器上安装Dock
- 基于 Python 对百度热搜 “Manus 推出引发科技圈震动” 的数据分析
萧十一郎@
pythonpython百度科技
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4关键词提取与词频统计2.5情感分析(简单示例,实际可采用更复杂模型)2.6数据可视化三、主要的代码难点解析3.1数据收集3.2数据清洗-文本预处理3.3关键词提取与词频统计3.4情感分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2文本预处理改进4.3关键词提取改进4.4情感分析改进4.5可视化改进一、案
- Python与数据可视化案例:电影评分可视化
master_chenchengg
pythonpython办公效率python开发IT
Python与数据可视化案例:电影评分可视化电影评分数据的魅力:为什么可视化很重要数据收集:如何获取电影评分数据使用API接口网络爬虫技术数据清洗与预处理:让数据变得干净整洁可视化实战:用Matplotlib和Seaborn绘制电影评分图表电影评分数据的魅力:为什么可视化很重要对于电影爱好者而言,电影评分不仅仅是数字那么简单,它承载着无数影迷的期待与梦想。想象一下,当你站在电影院门口,面对琳琅满目
- 智能录音工牌如何应用在员工培训效果评估上?
DuDuTalk
人工智能录音设备语音分析自然语言处理语音识别
在数字化转型加速的今天,企业对员工培训效果的重视程度日益增加。为了确保培训能够切实提升员工的工作能力和效率,许多公司开始探索新的技术和方法来优化这一过程。智能录音工牌作为新兴的技术解决方案之一,正逐渐成为评估员工培训效果的理想选择。本文将深入探讨智能录音工牌如何助力企业更精准地衡量培训成效,并推动员工技能持续进步。1、真实场景数据收集,构建全面评估体系智能录音工牌能够在员工与客户互动的过程中实时录
- 数据挖掘data mining
Wlq0415
学习5数据挖掘人工智能
数据挖掘是从大量数据集中提取有用信息和知识的过程。它通常涉及使用算法和技术来分析数据,以发现数据中的模式、趋势和关联。数据挖掘可以帮助企业和组织理解客户行为,预测市场趋势,优化运营流程等。数据挖掘的过程大致可以分为以下几个步骤:定义问题:明确数据挖掘的目的和需要解决的问题。数据收集:从各种数据源中收集相关的数据。数据预处理:清洗和整理数据,处理缺失值、异常值等问题。数据转换:将原始数据转换成适合挖
- 大模型在高血压预测及围手术期管理中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2研究目的1.3国内外研究现状二、大模型预测高血压的原理与方法2.1常用大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前风险预测与手术方案制定3.1术前风险因素分析3.2大模型预测术前风险的方法与结果3.3基于预测结果的手术方案制定四、术中风险预测与麻醉方案制定4.1术中风险因素分析4.2大模型实时监测与风险预测4.3基于预测结果的麻醉方案制定五、术
- 解锁数据抓取新高度:Python 分布式爬虫与逆向进阶实战课
七七知享
Python从入门到精通python分布式爬虫数据结构个人开发职场和发展学习方法
在数据为王的当下,高效获取有价值的数据是众多开发者的核心诉求。《Python分布式爬虫与逆向进阶实战》课程,堪称数据抓取领域的宝藏指南。课程专注于前沿技术,深入剖析分布式爬虫原理,教你如何巧妙构建分布式爬虫架构,突破大规模数据爬取的效率瓶颈,让数据收集如虎添翼。同时,逆向进阶部分更是一大亮点。它带领开发者深入钻研反爬虫机制,传授如何通过逆向思维与技术手段,精准破解各类复杂的反爬策略,确保爬虫稳定运
- JAVA的Selenium自动化爬取TK数据收集-----JAVA
旧约Alatus
软件架构设计JAVA#Spring-Boot框架springcloud后端springbootjvm分布式selenium爬虫
4.0.0org.springframework.bootspring-boot-starter-parent3.4.3com.alatusTiktokCrawl0.0.1-SNAPSHOTTiktokCrawlTiktokCrawl17org.springframework.bootspring-boot-starter-weborg.seleniumhq.seleniumselenium-ja
- AI人工智能 Agent:在保护隐私和数据安全中的应用
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在保护隐私和数据安全中的应用关键词:AIAgent、隐私保护、数据安全、同态加密、联邦学习、区块链1.背景介绍1.1问题的由来随着人工智能技术的快速发展,AIAgent在各行各业得到了广泛应用。然而,在享受AI带来便利的同时,人们也越来越关注个人隐私和数据安全问题。传统的数据收集和处理方式存在隐私泄露风险,亟需探索如何在AI时代更好地保护用户隐私。1.2研究现状目前,学术界
- 基于大模型的脂肪栓塞综合征风险预测与综合治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、脂肪栓塞综合征概述2.1定义与发病机制2.2病因与危险因素2.3临床表现与分类2.4诊断标准与方法三、大模型在脂肪栓塞综合征预测中的应用3.1大模型简介3.2数据收集与预处理3.3模型训练与验证3.4预测结果分析四、基于预测结果的手术方案制定4.1术前评估4.2手术方式选择4.3手术注意事项五、基于预测结果的麻醉方案制定5
- 因果推断在智能广告中的实践
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
非常感谢您提出这个有趣的话题。让我们一步步设计一个关于"因果推断在智能广告中的实践"的系统架构。这个项目将涉及复杂的数据分析、机器学习和广告投放系统,我们需要仔细考虑各个方面以确保系统的有效性和可扩展性。文章目录因果推断在智能广告中的实践-系统架构设计1.需求分析1.1功能需求1.2非功能性需求2.系统概述2.1高层次系统描述2.2主要组件及关系2.3系统核心流程3.详细架构设计3.1数据收集模块
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen