- ISBI 2023部分半监督学习论文汇总
xiongxyowo
划水
ISBI2023论文集:https://ieeexplore.ieee.org/xpl/conhome/10230311/proceeding[link]LeveragingInter-AnnotatorDisagreementforSemi-SupervisedSegmentation生物医学图像的信噪比通常较低,这往往导致专家们对GT分割存在分歧。现有的多重标注方法试图解决相互冲突的标注,而我
- MATLAB骨架化形态学运算专题详解
本文还有配套的精品资源,点击获取简介:骨架化是一种减少图像复杂度、提取主要结构的技术,在MATLAB中通过bwmorph函数进行。本专题涵盖了骨架化的基本原理、相关函数、实际应用以及如何通过形态学操作如膨胀、腐蚀、开闭运算来优化结果。骨架化在医学图像分析、工业检测和生物图像分析等领域有广泛应用。掌握骨架化技术有助于提升图像处理的效率和准确性。1.骨架化概念与重要性1.1骨架化的定义与基本概念在数字
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 医学图像增强的层级化模糊与虚拟仪器无参考质量评价研究【附代码】
拉勾科研工作室
计算机视觉图像处理人工智能
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)层级模糊隶属度的X光医学图像增强算法针对X光医学图像普遍存在的对比度差、细节模糊等问题,本算法提出了一种基于层级模糊隶属度的增强方法。该方法的核心思想在于利用拉普拉斯金字塔分解图像,并在多尺度下分层计算模糊隶属度
- [arXiv 2024] Medical SAM 2: Segment Medical Images as Video via Segment Anything Model 2
alfred_torres
医学图像分割SAM2
arXiv2024|MedicalSAM2:通用2D/3D医学分割新范式,“把医学图像当视频分割”论文信息标题:MedicalSAM2:SegmentMedicalImagesasVideoviaSegmentAnythingModel2作者:JiayuanZhu,AbdullahHamdi,YunliQi,YuemingJin,JundeWu单位:牛津大学、新加坡国立大学项目主页:https:/
- UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
摸鱼许可证
人工智能计算机视觉
引言在计算机视觉领域,UNet架构因其在图像分割任务中的卓越表现而广受欢迎。近年来,注意力机制的引入进一步提升了UNet的性能。本文将深入分析一个结合了线性注意力机制的UNet实现,探讨其设计原理、代码实现以及在医学图像分割等任务中的应用潜力。UNet架构概述UNet最初由Ronneberger等人提出,主要用于生物医学图像分割。其独特的U形结构由编码器(下采样路径)和解码器(上采样路径)组成,通
- Java医学图像处理系统实战源码剖析
好学的Jack
本文还有配套的精品资源,点击获取简介:本项目详细介绍了基于Java的医学图像处理系统,通过使用Java提供的图像处理库和多线程技术,实现了医疗图像的读取、预处理、分析、分割、存储及报告生成等关键功能。系统不仅支持多种图像格式和数据库集成,还考虑了用户界面设计和数据安全性,为医疗领域的图像分析需求提供了解决方案。学生和开发者可通过源码学习和实践,深入了解如何构建一个功能全面的医学图像处理平台。1.J
- 在VTK中捕捉体绘制图像并实时图像处理
点PY
三维渲染图像处理人工智能VTK
0.概要这段代码实现了一个高级的医学图像可视化系统,主要特点包括双窗口交互式体绘制、图像后处理和实时同步。1.核心功能架构主窗口:3D体绘制视图(GPU加速的体积渲染)副窗口:2D截图视图(带高斯模糊后处理)交互机制:副窗口的交互操作会实时影响主窗口的3D视图2.关键组件分析2.1自定义交互器(CustomInteractorStyle)classCustomInteractorStyle:
- 在VTK中捕捉体绘制图像进阶(同步操作)
点PY
三维渲染microsoftwindows
0.概要这段代码实现了一个VTK(VisualizationToolkit)应用程序,主要功能是:读取DICOM医学图像序列并进行体绘制(VolumeRendering)创建一个主窗口显示3D体绘制结果创建一个副窗口显示主窗口的2D截图将副窗口中的交互操作(如旋转、缩放等)转发到主窗口,而不影响副窗口本身1.代码解析以下是代码的详细解析:初始化和头文件部分包含必要的VTK模块初始化宏和头文件初始化
- 医图论文 AAAI‘25 | VOILA: 基于体素与语言交互的复杂度感知CT图像通用分割方法
小白学视觉
医学图像处理论文解读人工智能计算机视觉医学图像处理论文解读深度学习AAAI
论文信息题目:VOILA:Complexity-AwareUniversalSegmentationofCTimagesbyVoxelInteractingwithLanguageVOILA:基于体素与语言交互的复杂度感知CT图像通用分割方法作者:ZishuoWan,YuGao,WanyuanPang,DaweiDing论文创新点引入体素级对比学习:本文首次将体素级对比学习引入医学图像分割任务。通
- 推荐文章:Faster_Mean_Shift - GPU加速的像素嵌入框架利器
乌芬维Maisie
推荐文章:Faster_Mean_Shift-GPU加速的像素嵌入框架利器去发现同类优质开源项目:https://gitcode.com/在生物医学图像处理和细胞追踪领域,高效且精准的算法是必不可少的工具。今天,我们向您推荐一个优秀的开源项目——Faster_Mean_Shift,这是一个基于GPU加速的快速均值漂移算法,特别为递归神经网络(RNN)像素嵌入框架设计,用于整体细胞分割和跟踪。1、项
- (十三)计算机视觉中的深度学习:特征表示、模型架构与视觉认知原理
只有左边一个小酒窝
深度学习计算机视觉深度学习人工智能
1计算机视觉简介计算机视觉(ComputerVision)是一门使计算机能够从图像或视频中获取、处理和理解视觉信息的学科。它结合了信号处理、机器学习和深度学习等领域的技术,以实现对图像和视频内容的自动分析和理解。1.1计算机视觉的任务计算机视觉的任务多种多样,以下是一些常见的任务:图像分类(ImageClassification):定义:将图像分为预定义的类别。应用场景:自动照片标注、医学图像诊断
- 医图论文 Arxiv‘24 | SEG-SAM:用于统一医学图像分割的语义引导SAM
小白学视觉
医学图像处理论文解读医学图像处理医学图像顶会Arxiv论文解读深度学习
论文信息题目:SEG-SAM:Semantic-GuidedSAMforUnifiedMedicalImageSegmentationSEG-SAM:用于统一医学图像分割的语义引导SAM作者:ShuangpingHuang,HaoLiang,QingfengWang,ChulongZhong,ZijianZhou,MiaojingShi论文创新点语义感知解码器:作者提出了一个独立的语义感知解码器(
- nnUNet V2修改网络——暴力替换网络为Swin-Unet
w1ndfly
nnU-NetV2修改网络nnunet深度学习人工智能机器学习nnunetv2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。Swin-Unet是一种基于纯Transformer的U型编码器-解码器架构,专为医学图像分割任务设计。传统方法主要依赖卷积神经网络(CNN),尤其是U-Net及其变体,通过局部卷积操作和跳跃连接提取多尺度特征。然
- nnUNet V2修改网络——加入MultiResBlock模块
w1ndfly
nnU-NetV2修改网络深度学习人工智能卷积神经网络计算机视觉机器学习nnunetnnU-NetV2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。MultiResBlock是MultiResUNet中核心组件之一,旨在解决传统U-Net在处理多尺度医学图像时的局限性。传统的U-Net使用固定大小的卷积核(如3x3),这在处理具有不同尺度特征的医学图像时可能不
- 跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
Title题目Cross-viewdiscrepancy-dependencynetworkforvolumetricmedicalimagesegmentation跨视角差异-依赖网络用于体积医学图像分割01文献速递介绍医学图像分割旨在从原始图像中分离出受试者的解剖结构(例如器官和肿瘤),并为每个像素分配语义类别,这在许多临床应用中起着至关重要的作用,如器官建模、疾病诊断和治疗规划(Shamsh
- 全网最全医学图像数据汇总
概述⚠️重要声明:这些数据集仅适用于学术研究用途。目录CT数据集MRI数据集超声数据集内窥镜数据集病理数据集多模态数据集PET数据集OCT数据集皮肤镜数据集CT数据集名称任务类型部位格式数量下载链接MSDLung分割肺3D96下载MSDLiver分割肝脏3D201下载MSDSpleen分割脾脏3D61下载MSDHepaticVessels分割肝门静脉3D443下载MSDPancreas分割胰腺3D
- Ubuntu 安装 FSL 及多模态脑MRI的去颅骨处理(含 HD-BET 深度学习方法)
Joker 007
医学影像处理ubuntu深度学习linux
脑部医学图像处理的第一步通常是去颅骨(SkullStripping),也叫脑提取(BrainExtraction)。本文将介绍如何在Ubuntu系统中安装FSL,使用其经典工具BET进行T1、T2、PD模态的去颅骨操作,并补充介绍基于深度学习的更强大方法HD-BET。一、FSL安装与环境配置(Ubuntu)FSL(FMRIBSoftwareLibrary)是牛津大学开发的医学图像处理工具集,支持大
- 干货分享 | 关于 UNet 架构的8个热门面试问题
老唐777
人工智能机器学习深度学习计算机视觉图像处理面试python
前言UNet架构是专门为图像分割任务设计的深度学习模型。由于其能够处理高分辨率图像并生成准确的分割图,因此广泛应用于各种应用,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。UNet非常适合多类图像分割任务,但可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。本文主要介绍关于UNet架构的8个热门面试问题,希望对你有所帮助。资料分享正式开始之前,为了方便大家学习,我整理了
- YOLOv10改进 | Conv篇 | YOLOv10添加Mamba模块 (Mamba-Yolov10为目标检测、医学图像分割等任务带来新的发展和进步)
Ai缝合怪YOLO涨点改进
YOLOv8v10YOLOv8YOLO目标检测人工智能计算机视觉yolov8yolov10mamba
YOLOv8v10专栏限时99元订阅链接:限时99元去b站关注:AI缝合怪订阅YOLOv8v10创新改进高效涨点+持续改进300多篇(订阅的小伙伴,终身免费享有后续YOLOv11或是其他版本的改进专栏)目录一、Mamba模块介绍VSSmamba模块结构mamba模块动机CNN主要局限性:Transformer主要局限性:二、VSS模块核心代码三、手把手教你添加VSSBlock模块和修改task.p
- 跨平台三维可视化与图形库.VTK图形库.
yuanpan
信息可视化数据可视化
1.科学数据可视化体绘制(VolumeRendering)用于医学影像(如CT、MRI)、气象数据(如云层、流体模拟)的三维渲染,支持透明度、光照和颜色映射。等值面提取(Iso-Surfacing)通过算法(如MarchingCubes)从标量数据中提取表面(如医学图像中的器官轮廓)。流场可视化显示向量场(如风场、流体动力学),支持流线(Streamlines)、粒子追踪(ParticleTrac
- ITK-SNAP中手动修改已存在的标注
phyllis_110
其他经验分享
对于医学图像标注,完全手动进行可谓是相当费时费力,因此,目前大家使用最多的就是自动与手动结合,但自动化的图像标注往往不是很尽如人意,这个时候就需要我们手动的进行修改。在这里,我们使用的是ITK-SNAP软件。以下是使用具体步骤:1.打开原始图像和自动化标记图像2.接下来,首先选中下图中的刷子标识,然后在activatelabel中选择clearlabel3.对不想要的区域进行涂抹4.全部完成之后,
- nnUNet V2修改网络——暴力替换网络为UCTransNet
w1ndfly
nnU-NetV2修改网络nnU-NetV2nnunet深度学习计算机视觉机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。UCTransNet是一种创新的医学图像分割网络,它重新思考了U-Net中的跳跃连接设计。该网络以U-Net为基础架构,引入了通道变换器(CTrans)模块,专门用于替代传统的跳跃连接。其核心在于多尺度通道交叉融合
- UNet 改进(26):与FPN结合的图像分割网络
点我头像干啥
Unet模型改进transformer深度学习人工智能
1.介绍在计算机视觉领域,图像分割是一个核心任务,而UNet架构因其优异的性能在医学图像分割等领域广受欢迎。本文将详细解析一个结合了UNet和特征金字塔网络(FPN)的创新架构,展示如何通过融合两种经典网络的优势来提升分割性能。网络架构概述这个代码实现了一个结合UNet和FPN的混合架构,主要包含以下几个关键组件:DoubleConv模块:基础的双卷积块FPN模块:特征金字塔网络UNetWithF
- 性能远超 SAM 系模型,苏黎世大学等开发通用 3D 血管分割基础模型,入选 CVPR 2025
hyperai
如果把人的身体比作一座庞大的城市,那么血管无疑就是这座城市的「道路」,动脉、静脉以及毛细血管对应着高速公路、城市道路以及乡间小道,它们相互协作,通过血液将营养物质、氧气等输送到身体各处,从而维持着这座「城市」的高效、稳定运行。而当这些道路出现问题时,人们的身体自然也会随之发生病变。血管分割是检查这些「道路」是否存在问题的重要手段,如同城市建设中通过交通影像发现问题一般,它是医学图像处理中的一项关键
- 深度学习---常用优化器
灬0灬灬0灬
深度学习人工智能
优化器一:Adam(AdaptiveMomentEstimation)一、适用场景总结(实践导向)场景是否推荐用Adam说明小模型训练(如MLP、CNN)✅✅✅稳定、无需复杂调参,适合快速实验初学者使用或结构新颖✅✅容错率高,容易收敛医学图像初步建模✅✅常用于baseline训练复杂大模型(如Transformer)❌不推荐替代方案为AdamW,更稳定二、PyTorch代码与推荐参数设置impor
- MoE Align & Sort在医院AI医疗领域的前景分析(代码版)
Allen_Lyb
医疗数智化教程人工智能健康医疗数据分析架构
MoEAlign&Sort技术通过优化混合专家模型(MoE)的路由与计算流程,在医疗数据处理、模型推理效率及多模态任务协同中展现出显著优势,其技术价值与应用意义从以下三方面展开分析:一、方向分析1、提升医疗数据处理效率在医疗场景中,多模态数据(如医学影像、文本报告、传感器信号等)的高效处理是关键挑战。Med-MoE模型通过多模态医学对齐与域特定MoE调整,将医学图像与文本数据对齐,结合专家模型的领
- 神经网络开发实战:从零基础到企业级应用(含CNN、RNN、BP网络代码详解)
Android洋芋
神经网络cnnrnn深度学习激活函数与损失函数神经网络分层架构反向传播与参数优化
简介神经网络作为深度学习的核心,正在成为现代AI应用的基石。从基础的感知机到复杂的Transformer架构,从图像识别到自然语言处理,神经网络技术的演进推动了人工智能的快速发展。本文将系统介绍神经网络的核心概念、主流模型及其实现原理,并通过三个企业级实战案例(医学图像分类、对话系统开发和光伏预测)展示如何从零开始构建神经网络应用。每个案例都包含完整的Python代码实现、详细解释和部署策略,确保
- 【计算机视觉】OpenCV项目实战:基于OpenCV的图像分割技术深度解析与实践指南
白熊188
计算机视觉计算机视觉opencv人工智能
基于OpenCV的图像分割技术深度解析与实践指南项目概述与技术背景项目核心特点传统分割算法分类环境配置与项目结构系统要求安装步骤项目结构解析核心算法实现解析1.阈值分割(Otsu方法)2.Canny边缘检测3.分水岭算法实战应用指南1.基础分割流程2.多算法比较框架3.医学图像分割专项常见问题与解决方案1.过分割问题2.边缘断裂问题3.光照不均影响性能优化技巧1.多尺度处理2.ROI优先处理3.并
- AI服务器通常会运用在哪些场景当中?
wanhengidc
人工智能服务器运维
人工智能行业作为现代科技的杰出代表,在多个领域当中发展其强大的应用能力和价值,随之,AI服务器也在各个行业中日益显现出来,为各个行业提供了强大的计算能力和处理能力,帮助企业处理复杂的大规模数据,本文将来探索一下AI服务器通常都会运用在哪些场景当中吧!AI服务器可以运用在医疗教育当中,用于医学图像分析和基因组学研究等场景中,能够帮助其加速医学研究的速度,并且可以提高医学诊断的准确性,对国家医学领域发
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>