Keras框架使用Vnet2d模型对遥感图像语义分割

数据集:

 Keras框架使用Vnet2d模型对遥感图像语义分割_第1张图片

 

 

vnet2d网络如下,只分隔一个目标(大棚),所以是个二分类问题,因为目标区域较大这里我们采用传统的二分类交叉熵binary_crossentropy损失。



import numpy as np 
import os
import skimage.io as io
import skimage.transform as trans
import keras.backend as K
from keras.utils import multi_gpu_model
#from keras import optimizers
#from keras.utils import plot_model#使用plot_mode时打开
from keras.models import Model
from keras.layers import Conv2D,PReLU,Conv2DTranspose,add,concatenate,Input,Dropout,BatchNormalization,Activation
from keras.optimizers import Nadam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler

# from loss import generalized_dice_loss_fun,generalized_dice_coef_fun,dice_coef,dice_loss
#from keras import backend as keras
from keras.models import Model,load_model
from keras.layers import MaxPooling2D,UpSampling2D

from loss import *


def resBlock(conv,stage,keep_prob,stage_num=5):#收缩路径
    
    inputs=conv
    for _ in range(3 if stage>3 else stage):
        conv=PReLU()(BatchNormalization()(Conv2D(16*(2**(stage-1)), 5, activation = None, padding = 'same', kernel_initializer = 'he_normal')(conv)))
        #print('conv_down_stage_%d:' %stage,conv.get_shape().as_list())#输出收缩路径中每个stage内的卷积
    conv_add=PReLU()(add([inputs,conv]))
    #print('conv_add:',conv_add.get_shape().as_list())
    conv_drop=Dropout(keep_prob)(conv_add)
    
    if stage3 else stage):
        conv=PReLU()(BatchNormalization()(Conv2D(16*(2**(stage-1)), 5, activation = None, padding = 'same', kernel_initializer = 'he_normal')(conv)))
        print('conv_up_stage_%d:' %stage,conv.get_shape().as_list())#输出扩展路径中每个stage内的卷积
    conv_add=PReLU()(add([input_conv,conv]))
    if stage>1:
        conv_upsample=PReLU()(BatchNormalization()(Conv2DTranspose(16*(2**(stage-2)),2,strides=(2, 2),padding='valid',activation = None,kernel_initializer = 'he_normal')(conv_add)))
        return conv_upsample
    else:
        return conv_add

def vnet(pretrained_weights = None,input_size = (320,320,3),num_class=1,is_training=True,stage_num=6,thresh=0.5):#二分类时num_classes设置成1,不是2,stage_num可自行改变,也即可自行改变网络深度
    keep_prob = 1.0 if is_training else 1.0#不使用dropout
    features=[]
    input_model = Input(input_size)
    x=PReLU()(BatchNormalization()(Conv2D(16, 5, activation = None, padding = 'same', kernel_initializer = 'he_normal')(input_model)))
    
    for s in range(1,stage_num+1):
        x,feature=resBlock(x,s,keep_prob,stage_num)#调用收缩路径
        features.append(feature)
        
    conv_up=PReLU()(BatchNormalization()(Conv2DTranspose(16*(2**(s-2)),2,strides=(2, 2),padding='valid',activation = None,kernel_initializer = 'he_normal')(x)))
    
    for d in range(stage_num-1,0,-1):
        conv_up=up_resBlock(features[d-1],conv_up,d)#调用扩展路径
    if num_class>1:
        conv_out=Conv2D(num_class, 1, activation = 'softmax', padding = 'same', kernel_initializer = 'he_normal')(conv_up)
    else:
        conv_out=Conv2D(num_class, 1, activation = 'sigmoid', padding = 'same', kernel_initializer = 'he_normal')(conv_up)
     
    
    model=Model(inputs=input_model,outputs=conv_out)
    print(model.output_shape)
    
    model_dice=dice_loss(smooth=1e-5)
    # model_dice=generalized_dice_loss_fun(smooth=1e-5)

    model.compile(optimizer = Nadam(lr = 2e-4), loss = "binary_crossentropy", metrics = ['accuracy'])
    # model.compile(optimizer = Nadam(lr = 2e-4), loss = model_dice, metrics = ['accuracy'])

    #不使用metric
    # model.compile(optimizer = Nadam(lr = 2e-4), loss = model_dice)
    #plot_model(model, to_file='model.png')
    if(pretrained_weights):
    	model.load_weights(pretrained_weights)
    return model

loss与精准度曲线:

Keras框架使用Vnet2d模型对遥感图像语义分割_第2张图片

 

Keras框架使用Vnet2d模型对遥感图像语义分割_第3张图片

 

效果测试:

Keras框架使用Vnet2d模型对遥感图像语义分割_第4张图片

你可能感兴趣的:(语义分割)